Ming Hu
Ming Hu
Adjunct Distinguished Professor

Guangzhou University of Chinese Medicine
China

Education

1978-1982 B.S. in Pharmacy-Shanghai First Medical College, Shanghai, The People's Republic of China.
1983-1988  Ph.D. in Pharmaceutics-College of Pharmacy, The University of Michigan, Ann Arbor, Michigan.  (Advisor:  Dr. Gordon L. Amidon)
1988-1990 Postdoctoral Training-Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas.  (Mentor:  Dr. Ronald T. Borchardt)
1999  Sabbatical Leave at Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland (Host: Dr. Frank J. Gonzalez)

 

Biography

Dr. Hu’s laboratory is devoted to study the factors that govern the bioavailability of drugs, drug candidates, dietary chemicals, nutrients and micronutrients.  We are especially interested in the study of drug delivery modalities and/or mechanisms that have tremendous potentials for clinical utility. To achieve the proposed goal, we deploy a variety of biological model systems including rodent pharmacokinetic models, Caco-2 cells, intestinal perfusion, microsomes and S9 fractions that are enriched in metabolic enzymes from various drug metabolizing organs. We also employ formulation approaches (e.g., solubilizing agent and nanoparticle technology) to increase bioavailability of beneficial compounds.  Lastly, my lab uses all the necessary state-of-the-art analytical instruments available for conducting these studies, including two LC-MS/MS with one of the most sensitive instruments (perhaps the most sensitive) in AB Sciex 5500 QTrap.

Research Interest

Bioavailability of drugs, nutrients and micronutrients with emphasis on mechanisms of absorption and metabolism of flavonoids and phenolic drugs

Professional Activities:

1988-1990  Postdoctoral Fellow Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas.
1990-1997            Assistant Professor Department of  Pharmaceutics, College of Pharmacy, Washington State University, Pullman, Washington 99164. 
1997-2004            Associate Professor Department of  Pharmaceutics, College of Pharmacy, Washington State University, Pullman, Washington 99164-6510. 
2004-present            Professor Department of Pharmacological and Pharmaceutical Sciences at Texas Medical Center, College of Pharmacy, University of Houston, TX77030
2007-2013            Adjunct Distinguished Professor Southern Medical University, Guangzhou, China
2012-present            Adjunct Distinguished Professor Hubei University of Medicine, Shiyan, China
2013-present            Adjunct Distinguished Professor Guangzhou University of Chinese Medicine, Guangzhou, China

 

Publications

Referred Original Research Article

  1. Carrier-Mediated Transport of Amino Acids, Small Peptides, and Their Drug Analogs. P.J. Sinko, M. Hu, G.L. Amidon, J. Control. Rel., 6, 165 (1987)
  2. Membrane Permeability Parameters for Some Amino Acids and ß-Lactam Antibiotics: Application of Boundary Layer Approach. M. Hu, P.J. Sinko,  A.L.J. deMeere, D.A. Johnson, and G.L. Amidon, J. Theor. Biol., 131, 107-114 (1988)
  3. Passive and Carrier-Mediated Intestinal Absorption Components of Captopril. M. Hu and G. L. Amidon, J. Pharm. Sci., 77(12), 1007-1011 (1988)
  4. Use of the Peptide Carrier System to Improve the Intestinal Absorption of L--Methyldopa I: Carrier Kinetics, Intestinal Permeabilities, and In vitro Hydrolysis of the Dipeptidyl Derivatives of L--Methyldopa. M. Hu, P. Subramanian, H. Mosberg and G. L. Amidon, Pharm. Res., 6(1), 66-70 (1989)
  5. Mechanism of L--Methyldopa Transport through a Monolayer of Polarized Human Intestinal Epithelial Cells (Caco-2). M. Hu and R. T.  Borchardt, Pharm. Res., 7, 1313-1319 (1990)
  6. Utilization of Peptide Carrier System to Improve Intestinal Absorption: Targeting Prolidase as a Prodrug-Converting Enzyme. J.P.F. Bai, M. Hu, P.Subramanian, H. Mosberg and G. L. Amidon, J. Pharm. Sci., 81(2), 113-116 (1992)
  7. Transport of a Large Neutral Amino Acid in a Human Intestinal Epithelial Cell Line (Caco-2): Uptake and Efflux of Phenylalanine, M. Hu and R. T.  Borchardt, Biochim. Biophys. Acta, 1135, 233-244 (1992)
  8. Comparison of Uptake Characteristics of Thymidine and Zidovudine in a Human Intestinal Epithelial Model System. M. Hu,J. Pharm. Sci., 82, 829-833, 1993.
  9. The Caco-2 Cell Monolayers as an Intestinal Metabolism Model: Metabolism of Dipeptide Phe-Pro. M. Hu, J. Chen, D. Tran, Y. Zhu and G. Leonardo. J. Drug Targeting, 2, 79-89, 1994
  10. Mechanism and Kinetics of Transcellular Transport of a New -Lactam Antibiotic LoracarbefAcross an Human Intestinal Epithelial Model System (Caco-2).  M. Hu, J. Chen, Y. Zhu, A. H. Dantzig, R.E. Stratford, Jr., M.T. Kuhfeld. Pharm. Res. 11, 1405-1413, 1994
  11. Mechanisms and Kinetics of Uptake and Efflux of L-Methionine in an Intestinal Epithelial Model (Caco-2). J. Chen, Y. Zhu, M. Hu, J. Nutr, 124:1907-1916, 1994
  12. Comparison of L- and D-Methionine Transport in a Cultured Intestinal Epithelial Model and a Perfused Rat Intestinal Model. L. Zheng, J. Chen, Y. Zhu, H. Yang, W. Elmquist, M. Hu,  Pharm. Res. , 11, 1771-1776, 1994
  13. Mechanisms of Transport of Quinapril in Caco-2 Cell Monolayers: Comparison with Cephalexin.  M. Hu, L. Zheng, J. Chen, L. Liu, Y. Zhu, A. H. Dantzig, R.E. Stratford, Jr.  Pharm. Res., 12, 1120-1125, 1995
  14. Peptide Transporter Function and Prolidase Activities in Caco-2 Cells: A Lack of Coordinated Expression.   M. Hu, L. Zheng, J. Chen, L. Liu, Y. Li, A. H. Dantzig, and R. E. Stratford, Jr. J. Drug Targeting, 3, 291-300, 1995
  15. Uptake Characteristics of Loracarbef and Cephalexin in the Caco-2 Cell Culture Model:  Effects of the Proton Gradient and Possible Presence of A Distinctive Second Component.  M. Hu, J. Chen, L. Zheng, Y. Li, A. H. Dantzig, and R.E. Stratford, Jr.  J. Pharm. Sci., 85, 767-772, 1996
  16. The Development of Caco-2 Cells Expressing High Levels of cDNA-Derived Cytochrome P4503A4.  C. L Crespi, B. W. Penman, and M. Hu.  Pharm. Res.  13, 1635-1641, 1996
  17. Kinetic Model for the Drug Efflux Using a Human Intestinal Epithelial Model System. J. Chen, M. Hu, Y. Zhu, D. Tran. AataAcademialMedicinae Shanghai. 23(4), 247-251, 1996
  18. Development of a Novel Delivery System for Functional Enzyme: Application to Prolidase.  PDA Journal of Pharmaceutical Science and Technology. M. Hu.  51(6), 238-41, 1997.
  19. Determination of Absorption Characteristics of AG337, A Novel Thymidylate Synthase Inhibitor, Using a Perfused Rat Intestinal Model.   M. Hu, K. Roland, L. Ge, J. Chen, P. Tyle, and S. Roy.  J. Pharm. Sci., 87, 886-890, 1998
  20. Insulin Lispro: Adsorption and Stability in Selected Intravenous Devices.  J. Lin, M.Hu, T. Hagerup, Keith Campbell,  The Diabetes Educator, 25, 237-245, 1999
  21. Transport and Metabolic Characterization of Caco-2 Cells Expressing High Levels of cDNA-Derived Cytochrome P4503A4.  M. Hu, Y. Li, B. W. Penman, S. M. Huang, K. Thummel, C. L Crespi,  Pharm. Res., 16, 1352-9, 1999
  22. Analysis of Drug Transport and Metabolism in Cell Monolayer Systems that have been modified by Cytochrome P4503A4 cDNA-Expression. C. L. Crespi, L. Fox, P. Stocker, M. Hu and D. T. Steimelin.  Eur. J. Pharm. Sci., 12(1):63-8, 2000
  23. P-Glycoprotein-Mediated Transepithelial Transport of AG337, A Novel Anticancer Agent, In Caco-2 Cell Culture Model. J. Chen, M. Hu, Y. Li. Chinese Journal of Clinical Pharmacy. 9(3), 168-171, 2000
  24. Absorption and Metabolism of Flavonoids in the Caco-2 Cell Culture Model and a Perfused Rat Intestinal Model. Y. Liu and M. Hu, Drug MetabDispos. 30(4):370-7, 2002.
  25. Kinetic Characterization of Secretory Transport of a New Ciprofloxacin Derivative (CNV97100) Across Caco-2 Cell Monolayers. A. Ruiz-García, H, Lin, J. M. Plá-Delfina, and M. Hu, J. Pharm. Sci., 91, 2511-2519, 2002
  26. Metabolism of Flavonoids via Enteric Recycling: Role of Intestinal Disposition. J. Chen, H. Lin, M. Hu, J PharmacolExpt Therap. 304: 1228-1235, 2003
  27. Function and Molecular Characterization of Rat Intestinal Prolidase.  M. Hu, Z. Cheng and L. Zheng. Pediat. Res.  53(6):905-14, 2003
  28. Identification of CYP1A2 as the Main Isoform for the Phase I Metabolism of Genistein and Its Isoflavone Analogs.  M. Hu, K. Krausz, X. Ge, J. Li, H. L. Gelboin, and F.. J. Gonzalez, Drug Metab. Dispos., 31(7):924-931, 2003 
  29. Disposition of Flavonoids via Recycling: Mechanistic Studies of Disposition of Apigenin in the Caco-2 Cell Culture Model. M. Hu, J. Chen, H. Lin J. Pharmacol. Exp. Therap., J PharmacolExptTher.  307(1):314-21, 2003.
  30. Enteric Disposition and Recycling of Flavonoids and Ginkgo Flavonoids.  Y. Liu, Y. Liu, Y. Dai, L. Xun, and M. Hu.  J Altern. Complement. Med. 9(5):631-640, 2003
  31. Disposition Mechanisms of Raloxifene in the Human Intestinal Caco-2 Model.  E. J. Jeong, H. Lin, and M. Hu, J Pharm ExpTherap310(1):376-85, 2004.
  32. Nucleobase and p-glycoprotein mediated transport of AG337 in Caco-2 Cell Culture Model.  M. Hu and J. Chen.  Mol. Pharmaceut. 1, 194-200, 2004
  33. Disposition of Flavonoids via Enteric Recycling: Metabolism and Excretion of Two Red Clover Isoflavones Biochanin A and Formononetin.  X. Jia, J. Chen, H. Lin, M. Hu, J PharmacolExp Therap. 310(3):1103-13, 2004.
  34. Potential Beneficial Metabolic Interactions between Tamoxifen and Isoflavones via Cytochrome P450-Mediated Pathways in Female Rat Liver Microsomes.  J. Chen, S. Halls, J.F. Alfaro, Z. Zhou and M. Hu, Pharm. Res. 21(11):2095-104, 2004.
  35. Quality, Labeling Accuracy and Cost Comparison of Purified Soy Isoflavonoid Products. R. Chua, K. Anderson, J. Chen, M. Hu.  J. Altern. Complem. Med. 10(6):1053-60, 2004
  36. Absorption and Metabolism of Genistein and Its Isoflavone Analogs in Human Intestinal Caco-2 Cells. J. Chen, H. Lin, M. Hu. Cancer ChemotherPharmacol. 55(2):159-69, 2005
  37. Species- and Disposition Model-Dependent Metabolism of Raloxifene in Gut and Liver:  Role of UGT1A10.  E. J. Jeong, J. Chen, H. Lin, and M. Hu, Drug Metab. Disp., 33(6):785-94, 2005
  38. Disposition of Formononetin via Enteric Recycling: Metabolism and Excretion in Mouse Intestinal Perfusion and Caco-2 Cell Models.  E. Jeong, X. Jia, and M. Hu, Molecular Pharmaceutics, 2 (4):319-328, 2005
  39. Disposition of Flavonoids via Recycling: Comparison of Intestinal versus Hepatic Metabolism.  J. Chen, S. Wang, X. Jia, S. Bajimaya, H. Lin, and M. Hu., Drug Metab. Disp., 33 (12): 1777-1784, 2005
  40. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties.  S. W.J. Wang, X. Jia, V. H. Tam, J. Chen, M. Hu, Drug Metab. Disp., 34(11):1837-48, 2006
  41. Mechanisms of Pharmacokinetic Interactions between Paeoniflorin and Sinomenine: Role of Intestinal Disposition.  Zhong-Qiu Liu, Liang Liu, Zhi-Hong Jiang, and Ming Hu, Pharm. Res. 23(12):2768-80, 2006
  42. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact Caco-2 TC7 cells using siRNA. X. Liu, V. Tam, and M. Hu, Mol. Pharm. 4(6):873-82, 2007
  43. Disposition of Flavonoids via Enteric Recycling: Enzyme Stability Affects Characterization of Prunetin Glucuronidation across Species, Organs, and UGT Isoforms, T. B. Joseph, S. W.J. Wang, X. Liu, J. Wang, K, H. Kulkarni, H. Xu, and M. Hu  Mol Pharm.  4(6):883-94, 2007
  44. Variable Isoflavone Contents of Red Clover Products Affect Their Intestinal Disposition  S. W.J. Wang, Y. Chen, T. B. Joseph, M. Hu, JAltern Comp. Med, 14, 287-297, 2008
  45. Intestinal Absorption Mechanisms of Prenylated Flavonoids Present in the Heat-Processed EpimediumkoreanumNakai (Yin Yanghuo). Y. Chen, X. Jia, and M. Hu, Pharm Res. 25, 2190-2199, 2008
  46. In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts.  Li YM, Li XM, Li GM, Du WC, Zhang J, Li WX, Xu J, Hu M, Zhu Z.  J Agric Food Chem. 56(14):5550-7, 2008.
  47. Determination of Osthol and Its Metabolites in a Phase I Reaction System and the Caco-2 Cell Model by HPLC-UV and LC-MS/MS.  Z. Yuan, H. Xu, K. Wang, Z. Zhao, and M. Hu.  J. Pharm. Biomed. Anal., 49(5):1226-32, 2009 PMID: 19304430
  48. Disposition of Flavonoids via Enteric Recycling:  UGT1As Deficiency in Gunn Rats Is Compensated by Increases in UGT2Bs Activities.  S. W.J. Wang, K H. Kulkarni, L. Tang, J. Wang, T. Daidoji, H. Yokota, and M. Hu, J. Pharmacol. Exp. Therap. 329(3):1023-31, 2009 PMID 19264971
  49. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones.  L. Tang, R. Singh, X. Liu, and M. Hu, Mol. Pharm. 6(5):1466-82, 2009.PMID: 19545173
  50. Butanol fraction containing berberine or related compound from nexrutine inhibits NFkappaB signaling and induces apoptosis in prostate cancer cells. SB Muralimanoharan, AB Kunnumakkara, B Shylesh, KH Kulkarni, H. Xu, M. Hu, BB Aggarwal, G.Rita, APKumar. Prostate. 69(5):494-504, 2009.PMID: 19107816
  51. Disposition of Naringenin Differs from Apigenin and Is Affected by Compensating Efflux Transporters (MRP2 and BCRP) of Hydrophilic Glucuronides. H. Xu, K. H. Kulkarni, and M. Hu, Mol. Pharm. 6(6):1703-15, 2009.PMID: 19736994
  52. Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC-MS/MS method.  Zhen Yang, Song Gao, Taijun Yin, Kaustubh H Kulkarnia, Yang Teng, Ming You, and Ming Hu.  J. Pharm. Biomed. Anal.,51(5), 1120-1127, 2010.PMID: 20034755
  53. Highly Variable Contents of Phenolics in St John’s Wort Products Impact Their Transport in the Human Intestinal Caco-2 Cell Model: Pharmaceutical and Biopharmaceutical Rationale for Product Standardization.  S. Gao, W. Jiang, T. Yin, and M. Hu, J. Agric Food Chem. 58(11):6650-9, 2010.PMID: 20450158
  54. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC-MS/MS method: application to an oral bioavailability study of genistein in mice.Z. Yang, W. Zhu, S. Gao, H. Xu, B. Wu, R. Singh, L. Tang, K. Kulkarni and M. Hu, J. Pharm. Biomed. Anal.53(1):81-9, 2010.PMID: 20378296
  55. Use of Glucuronidation Fingerprinting to Describe and Predict mono- and di- Hydroxyflavone Metabolism by Recombinant UGT Isoforms and Human Intestinal and Liver Microsomes.  L. Tang, L. Ye, R. Singh, B. Wu, C. Lv, J. Zhao, Z. Liu, and M. Hu, Mol. Pharm. 7(3):664-79, 2010 PMID: 20297805
  56. Use of Isoform-Specific UGT Metabolism to Predict Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes.  Q. Zhou, Z. Zheng, B. Xia, L. Tang, C. Lv, W. Liu, Z. Liu, and M. Hu. Pharm, Res. 27(8):1568-83,2010 PMID: 20411407
  57. Species and gender differences affect the metabolism of emodin via glucuronidation, W. Liu, L. Tang, L. Ye, Z. Cai, B. Xia, J. Zhang, M. Hu, Z. Liu, AAPSJ12(3):424-36, 2010. PMID: 20467923
  58. Breast Cancer Resistance Protein (Bcrp1) and Sulfotransferases Determine the Disposition of Genistein in Mouse Intestine. W. Zhu, S. W. J. Wang, H. Xu, and M. Hu, AAPS J. 12(4):525-36. 2010 PMID: 20582579
  59. Identification of the Position of Flavonoid O-glucuronidation by Analyzing Shift in Online UV Spectrum (max) Generated from a Diode-arrayed Detector. R. Singh, B. Wu, M. Hu.  J. Agr Food Chem., J Agric Food Chem. 58(17):9384-95,2010, PMID: 20687611
  60. The pharmacokinetics of raloxifene and its interaction with apigenin in rat.  Chen Y, Jia X, Chen J, Wang J, Hu M. Molecules. 15(11):8478-87, 2010.PMID: 21088662
  61. 3D-QSAR Studies on UGT1A9-mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-based CoMFA Model.  B. Wu, J. Morrow, R. Singh, S. Zhang, and M. Hu. J PharmacolExpTher. 336(2):403-13, 2011. Epub 2010 Nov 10. PMID: 21068207
  62. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Chen Y, Wang J, Jia X, Tan X, Hu M. Molecules. 16(2):1336-48, 2011, PMID:21285919
  63. Sensitive and robust UPLC-MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide. Liu W, Zheng Z, Liu X, Gao S, Ye L, Yang Z, Hu M, Liu Z. J Pharm Biomed Anal. 2011 Apr 5;54(5):1157-62. Epub 2010 Dec 9. PMID: 21195574
  64. Sulfation of selected mono-hydroxyflavones by sulfotransferases in vitro: a species and gender comparison. Yang CH, Tang L, Lv C, Ye L, Xia BJ, Hu M, Liu ZQ. J Pharm Pharmacol. 2011 Jul; 63 (7) :967-70.PMID:21635263.
  65. Validated LC-MS/MS method for the determination of maackiain and its sulfate and glucuronide in blood: Application to pharmacokinetic and disposition studies. Gao S, Yang Z, Yin T, You M, Hu M.  J Pharm Biomed Anal. 55(2):288-93, 2011. PMID:  21349678
  66. Uridine Diphosphate Glucuronosyltransferase Isoform-Dependent Regiospecificity of Glucuronidation of Flavonoids.  Singh R, Wu B, Tang L, Hu M., J. Agric. Food Chem., 59(13):7452-64, 2011 PMID:21413806
  67. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein. Ye L, Tao W, Tang L,  Liu W,  Yang Z, Zhou J,  Zheng Z, Cai Z,  Hu M, Liu, Z, J. Pharm. Sci.,100, 5007-17, 2011 PMID: 21721007
  68. Regioselective Glucuronidation of Flavonols by Six Human UGT1A Isoforms. Wu B, Xu B, Hu M. Pharm Res. 28(8):1905-18, 2011 PMID: 21472492
  69. In-vitro potency of various polymyxin B components. Tam VH, Cao H, Ledesma KR, Hu M.Antimicrob Agents Chemother. 55(9):4490-4491, 2011PMID:
  70. Enhancement of oral bioavailabilityof ginsenoside 20(s)-Rh2 through improved understanding of its absorption and efflux mechanisms.Yang Z, Gao S, Wang J, Yin T, Teng Y,Wu B, You M, Jiang ZH, and Hu M. Drug Metab. Disp.,39:1866-72, 2011.PMID:21757611
  71. Evaluation of 3,3’,4’-trihydroxyflavone and 3,6,4’-trihydroxyflavone (4’-O-glucuronidation) as the in vitro functional markers for hepatic UGT1A1. Wu B, Zhang SX, Hu M.  Mol. Pharm., 8:2379-89, 2011 PMID: 21985641
  72. UGT1A9-overexpressing HeLa Cells Is an Appropriate Tool to Delineate the Kinetic Interplay between BCRP and UGT and to Rapidly Identify the Glucuronide Substrates of BCRP. Jiang W, Xu B, Wu B, Yu R, Hu M, Drug Metab. Disp., 40(2):336-45, 2012PMID:22071170
  73. Development and validation of a highly sensitive ULPC-MS/MS method for simultaneous determination of aconitine, mesaconitine, hypaconitine, and five of their metabolites in rat blood and its application to a pharmacokinetic study of aconitine, mesaconitine, and hypaconitine. Ye L, Gao S, Liu W, Yang Z, Hu M and Liu, ZQ, Xenobiotica, 42(6):518-25, 2012PMID:22188409
  74. Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches. Wu BJ, Singh R, Yin T, MorrowJK, Zhang S, and Hu M.  Pharm. Res., 29(6):1544-61, 2012 PMID:22302521
  75. SULT1A3-mediated regiospecific 7-O-sulfation of flavonoids in Caco-2 cells can be explained by the relevant molecular docking studies. Meng SN, Wu BJ, Singh R, Yin T, MorrowJK, Zhang S, and Hu M.  Mol. Pharm., 9(4):862-73,2012PMID:22352375
  76. Systematic Studies of Sulfation and Glucuronidation of 12 Flavonoids in the Mouse Liver S9 Fraction Reveals both Unique and Shared Positional Preferences. Tang L,  Yang CH, Zhou J,  Xia BJ, Hu M, Liu ZQ J. Agric. Food Chem. 60(12):3223-33, 2012PMID:22352802
  77. CYP3A-dependent Drug Metabolism is Reduced in Bacterial Inflammation in Mice.  Gandhi, A, Guo T, Shah P,  Moorthy B, Chow D, Hu M, and Ghose, R.  Br. J. Pharmacol., 166(7):2176-87, 2012PMID:22394353
  78. Inhibition of p-glycoprotein leads to improved oral bioavailability of compound k, an anticancer metabolite of red ginseng extract produced by gut microflora. Yang Z, Wang JR, Niu T, Gao S, Yin T, You M, Jiang ZH, and Hu M.Drug MetabDispos 40:1538-1544, 2012.PMID:22584255
  79. Characterization of Polymyxin B-induced Nephrotoxicity: Implications for Dosing Regimen Design. Abdelraouf K, Braggs KH, Yin T, Truong LD, Hu M, Tam VH. Antimicrob Agents Chemother. 2012  Sep;56(9):4625-9PMID:22687519.
  80. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli.  Singh R, Swick MC, Ledesma KR, Yang Z, Hu M, Zechiedrich L, Tam VH.  Antimicrob Agents Chemother. 2012 Apr;56(4):1680-5. PMID:    22232279
  81. Breast Cancer Resistance Protein (ABCG2) Determines Distribution of Genistein Phase II Metabolites: Reevaluation of the Roles of ABCG2 in the Disposition of Genistein. Yang Z, Zhu W, Gao S, Yin T, Jiang W, and Hu M.Drug MetabDispos.40:1883-1893, 2012PMID:22736306
  82. Effects of estrogen and estrus cycle on pharmacokinetics, absorption, and disposition of genistein in female Sprague-Dawley rats. Kulkarni KH, Yang Z, Niu T, Hu M. J Agric Food Chem. 2012 Aug 15;60(32):7949-56 PMID:22757747
  83. Pharmacokinetics and Renal Disposition of Polymyxin B in an Animal Model. Abdelraouf K, He J, Ledesma KR, Hu M, Tam VH. Antimicrob Agents Chemother56(11):5724-7,2012 PMID:22908162
  84. A New Strategy to Rapidly Evaluate Kinetics of Glucuronide Efflux by Breast Cancer Resistance Protein (BCRP/ABCG2). Wu B, Jiang W, Yin T, Gao S, Hu M.  Pharm Res. 29(11):3199-208,2012 Jul 3. PMID:22752253
  85. A Novel Local Recycling Mechanism That Enhances Enteric Bioavailability of Flavonoids and Prolongs Their Residence Time in the Gut. Xia B, Zhou Q, Zheng Z, Ye L, Hu M, Liu Z. Mol Pharm, 9(11):3246-58,2012 PMID:23033922
  86. Ginsenoside Rb1 Directly Scavenges Hydroxyl Radical and Hypochlorous Acid. Lü JM, Weakley S, Yang Z, Hu M, Yao Q, Chen C.  Curr Pharm Des. 18(38):6339-47, 2012PMID:    22974003.
  87. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. ToxicolApplPharmacol. 265(3):316-24, 2012 PMID: 22982073.
  88. Bioactivity and Bioavailability of Ginsenosides are Dependent on the Glycosidase Activities of the A/J Mouse Intestinal Microbiome Defined by Pyrosequencing. Niu T, Smith DL, Yang Z, Gao S, Yin T, Jiang ZH, You M, Gibbs RA, Petrosino JF, Hu M. Pharm Res. 30 (3), 836-846, 2013. PMID:23254888
  89. Chemopreventive effect of a mixture of Chinese herbs (antitumor B) on chemically induced oral carcinogenesis. Wang Y, Yao R, Gao S, Wen W, Du Y, Szabo E, Hu M, Lubet RA, and You M.  Mol. Carcinogenesis., 52(1):49-56, 2013PMID:22086836
  90. Revolving Door Action of BCRP Facilitates or Controls the Efflux of Flavone Glucuronides from UGT1A9-Overexpressing HeLa Cells.  Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, Yang G, and Hu M.  Mol Pharm, 10(5):1736-50, 2013
  91. Mutual Regioselective Inhibition of Human UGT1A1-Mediated Glucuronidation of Four Flavonoids. Ma G, Wu B, Gao S, Yang Z, MaY, and Hu M.  Mol Pharm, 10, 2891-903, 2013.
  92. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Ye L, Yang X, Yang Z, Gao S, Yin T, Liu W, Wang F, Hu M, Liu Z. Toxicol Lett. 2013 Feb 4;216(2-3):86-99
  93. The exposure of highly toxic aconitine does not significantly impact the activity and expression of cytochrome P450 3A in rats determined by a novel ultra performance liquid chromatography-tandem mass spectrometric method of a specific probe buspirone. Zhu L, Yang X, Zhou J, Tang L, Xia B, Hu M, Zhou F, Liu Z.Food ChemToxicol. 2013 Jan;51:396-403
  94. A validated ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of polymyxin B in mouse serum and epithelial lining fluid: application to pharmacokinetic studies. He J, Gao S, Hu M, Chow DS, Tam VH. J AntimicrobChemother. 68(5):1104-10, 2013.
  95.  In vitro pharmacodynamics of AZD5206 against Staphylococcus aureus. Tam VH, Chang KT, Yang Z, Newman J, Hu M. Antimicrob Agents Chemother. 57(2):1062-4, 2013.
  96.  Absolute Quantification of UGT1A1 in Various Tissues and Cell Lines Using Isotope-free UPLC-MS/MS Method Determines its Turnover Number and Correlates with its GlucuronidationActivities.  Xu B, Gao S, Wu B, Yin Y, Hu M.  J Pharm Biomed Anal.88, 180-190, 2014
  97. Breast Cancer Resistance Protein-Mediated Efflux of Luteolin Glucuronides in HeLa Cells Overexpressing UDP-Glucuronosyltransferase 1A9. Tang L, Li Y, Chen WY, Zeng S, Dong LN, Peng XJ, Jiang W, Hu M, Liu ZQ. Pharm Res. 31 (4), 847-860, 2014
  98. Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis.  Gorla SK, McNair NN, Yang G, Gao S, Hu M, Jala VR, Haribabu B, Striepen B, Cuny GD, Mead JR, Hedstrom L.  Antimicrob Agents Chemother. 2014 58(3):1603-14.
  99.  Transformation of ginsenosides from notoginseng by artificial gastric juice can increase cytotoxicity toward cancer cells. Wang JR, Yau LF, Zhang R, Xia Y, Ma J, Ho HM, Hu P, Hu M, Liu L, Jiang ZH. J Agric Food Chem. 62(12):2558-73, 2014.
  100.  In Vitro Assessment and Multicenter Cohort Study of Comparative Nephrotoxicity Rates Associated with Colistimethate versus Polymyxin B Therapy. K Phe, Y Lee, PM McDaneld, N Prasad, TYin, DA Figueroa, W L Musick, J M Cottreau, M Hu, V H Tam, Antimicrobial Agents and Chemotherapy 58 (5), 2740-2746, 2014
  101. Comparison of nephrotoxicity rates associated with colistimethate versus polymyxin B therapy: in vitro assessment and a multicenter cohort study. K Phe, Y Lee, PM McDaneld, N Prasad, TYin, DA Figueroa, W L Musick, J M Cottreau, M Hu, V H Tam, Antimicrobial Agents and Chemotherapy AAC 02476-13, 2014
  102.  acid facilitates absorption of copper in the Caco-2 cell culture model.  S Gao, T Yin, B Xu, Y Ma, Hu M, Life Sci. 109(1):50-6, 2014.
  103.  Uptake of polymyxin B into renal cells.  Abdelraouf K, Chang KT, Yin T, Hu M, Tam VH. Antimicrob Agents Chemother. 58(7):4200-2, 2014.
  104.  The influences of aconitine, an active/toxic alkaloid from aconitum, on the oral pharmacokinetics of CYP3A probe drug buspirone in rats. Zhu L, Lu L, Guo E, Wu J, Wang Y, Hu M, Liu Z. Drug Metab Lett. 8(2):135-44, 2014
  105. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5'-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. Li Q, Wang L, Dai P, Zeng X, Qi X, Zhu L, Yan T, Wang Y, Lu L, Hu M, Wang X, Liu Z. J Chromatogr A. 1395:116-28, 2015
  106. Characterization of oxygenated metabolites of ginsenoside Rb1 in plasma and urine of rat.Wang JR, Yau LF, Tong TT, Feng QT, Bai LP, Ma J, Hu M, Liu L, Jiang ZH. J Agric Food Chem. 63(10):2689-700, 2015.
  107. Significantly Decreased and More Variable Expression of Major CYPs and UGTs in Liver Microsomes Prepared from HBV-Positive Human Hepatocellular Carcinoma and Matched Pericarcinomatous Tissues Determined Using an Isotope Label-free UPLC-MS/MS Method. Yan T, Gao S, Peng X, Shi J, Xie C, Li Q, Lu L, Wang Y, Zhou F, Liu Z, Hu M. Pharm Res. 32(3):1141-57, 2015.
  108.  A validated liquid chromatography-tandem mass spectrometry method for the determination of methyl gallate and pentagalloylglucopyranose: application to pharmacokinetic studies. Jiamboonsri P, Pithayanukul P, Bavovada R, Gao S, Hu M. J Chromatogr B, 986-987:12-7, 2015
  109. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, Wang Y, Wang X, Hu M, Liu Z. AAPS J.  17(3):723-36, 2015 
  110. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. Ge S, Gao S, Yin T, Hu M. J Agric Food Chem. 63(11):2902-10, 2015
  111. UDP-Glucuronosyltransferases 1A6 and 1A9 are the Major Isozymes Responsible for the 7-O-Glucuronidation of Esculetin and 4-Methylesculetin in Human Liver Microsomes.Zhu L, Lu L, Zeng S, Luo F, Dai P, Wu P, Wang Y, Liu L, Hu M, Liu Z.Drug MetabDispos. 43(7):977-83, 2015.
  112.  A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5'-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats.Li Q, Wang L, Dai P, Zeng X, Qi X, Zhu L, Yan T, Wang Y, Lu L, Hu M, Wang X, Liu Z.J Chromatogr A. 1395:116-28, 2015.
  113.  Developing an activity and absorption-based quality control platform for Chinese traditional medicine: Application to Zeng-Sheng-Ping(Antitumor B). Yin T, Yang G, Ma Y, Xu B, Hu M, You M, Gao S.J Ethnopharmacol. 172:195-201, 2015.
  114.  Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4. Liu W, Shi J, Zhu L, Dong L, Luo F, Zhao M, Wang Y, Hu M, Lu L, Liu Z. Drug Des DevelTher. 9:5771-83, 2015.
  115. Simultaneous determinations of 17 marker compounds in Xiao-Chai-Hu-Tang by LC-MS/MS: Application to its pharmacokinetic studies in mice. Sun R, Zeng M, Du T, Li L, Yang G, Hu M, Gao S. J Chromatogr B, 1003:12-21, 2015.
  116.  Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes.Dai P, Luo F, Wang Y, Jiang H, Wang L, Zhang G, Zhu L, Hu M, Wang X, Lu L, Liu Z.Biopharm Drug Dispos. 2015
  117. Quantitation of celecoxib and four of its metabolites in rat blood by UPLC-MS/MS clarifies their blood distribution patterns and provides more accurate pharmacokinetics profiles.Ma Y, Gao S, Hu M. J Chromatogr B, 1001:202-11, 2015.
  118.  Development and validation of an UPLC-MS/MS method for the quantification of columbin in biological matrices: Applications to absorption, metabolism, and pharmacokinetic studies. Yang G, Gao S, Sun R, Yin T, Hu M. J Chromatogr B, 1002:13-8, 2015.
  119.  Curcumin Affects Phase II Disposition of Resveratrol through Inhibiting Efflux Transporters MRP2 and BCRP. Ge S, Yin T, Xu B, Gao S, Hu M., Pharm. Res., e-Pub

Book Edited

  1. Oral Bioavailability: Basic Principles, Advanced Concepts and Applications (Hu M and Li XL editors, 1st Ed.).  July, 2011 Wiley and Son

Review Articles and Book Chapters

  1. Amobarbital (Monograph), M. Hu, in "Chemical Stability of  Pharmaceuticals", 2nd Ed., K.A. Connors, G.L. Amidon and  V.J. Stella (Eds.), John Wiley & Sons, N.Y. (1986)
  2. Design of Prodrugs for Oral Drug Delivery. G.L. Amidon, G.D. Leesman, P.J. Sinko and M. Hu, Proceedings of 2nd International ISSX Meeting: Xenobiotic Metabolism and Disposition , Taylor and Francis Ltd., England (1988)
  3. Absorption of Difficult Drug Molecules; Carrier-Mediated Transport of Peptides and Peptide Analogs. G.L. Amidon, P.J. Sinko, M. Hu and G.D. Leesman, in "Novel Drug Delivery and Its Therapeutic Application", L.F. Prescott and W.S. Nimmo, Eds., John Wiley and Sons. Ltd., England (1989)
  4. Pharmaceutical Applications Of Cell Culture: An Overview. R.T. Borchardt, I.J. Hidalgo, K.M. Hillgren and M. Hu, in "Pharmaceutical  Applications of Cell and Tissue Culture", G. Wilson, S.S. Davis and L. Illum eds., Plenum, New York (1991)
  5. P-Glycoprotein and Bioavailability-Implication of Polymorphism.  Y. Liu and M. Hu, Clin. Chem. Lab. Med., 38(9), 877-881, 2000PMID:
  6. The Use of Caco-2 Cell Monolayers to Study Drug Absorption and Metabolism.  M. Hu, J. Lin, H. Lin, J. Chen, in “Optimization in Drug Discovery: In Vitro Methods” (Z. Yan and GW Caldwell eds.) Humana Press, pp.19-35, 2004
  7. In Situ Single-Pass Perfused Rat Intestinal Model for Absorption and Metabolism.   E. J. Jeong, Y. Liu, H. Lin, M. Hu, in “Optimization in Drug Discovery: In Vitro Methods” (Z. Yan and GW Caldwell eds.) Humana Press, pp.69-76, 2004
  8. Coupling of Conjugating Enzymes and Efflux Transporters: Impact on Bioavailability and Drug Interaction, E.J. Jeong, X. Liu, X. Jia. J. Chen, M. Hu.  Curr. Drug Metab., 6, 455-468, 2005PMID:16248837
  9. Natural Polyphenol Disposition via Coupled Metabolic Pathways.  Z. Liu, M. Hu, Expert Opinion in Drug Metabolism, 3, 389-406, 2007 PMID:17539746
  10. Commentary:  Bioavailability of Flavonoids and Polyphenols: Call to Arms, M. Hu, Mol Pharm.  4(6):803-6, 2007PMID:18052085
  11. Oral Absorption Basics: Pathways, Physicochemical and Biological Factors, and Methods of Study.  Z. Liu, S. W.J. Wang, and M. Hu in “Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice” (Y. Qiu, Y. Chen, G. G.Z. Zhang, L. Liu, W. Porter Eds.), Academic Press, 2008
  12. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics. S. Gao, M. Hu, Mini Rev Med Chem. 10 (6): 550-567, 2010PMID: 20370701
  13. First-pass metabolism via UDP-glucuronosyltransferases: a barrier to oral bioavailability of phenolics.  B. Wu, K. Kulkarnia, S. Zhang, M. Hu, J. Pharm. Sci., 100(9):3655-81, 2011PMID: 21484808
  14. Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis of Conjugation. Wu B, Basu D, Meng S, Wang X, Zhang S, Hu M. Curr Drug Metab.12(9):900-16, 2011PMID:21933112
  15. Barriers to Oral Bioavailability: An Overview.  M. Hu and X. Li, in “Oral Bioavailability: Basic Principles, Advanced Concepts and Applications (Hu M and Li XL editors, 1st Ed.).  July, 2011
  16. Drug Metabolism in Gastrointestinal Track. R. Singh and M. Hu, in “Oral Bioavailability: Basic Principles, Advanced Concepts and Applications (Hu M and Li XL editors, 1st Ed.).  July, 2011
  17. Amino Acid Drug Transporters.  Z. Liu and M. Hu, in “Oral Bioavailability: Basic Principles, Advanced Concepts and Applications (Hu M and Li XL editors, 1st Ed.).  July, 2011
  18. Caco-2 Cell Culture Model for Oral Drug Absorption.  K Kulkarni and M Hu  ,in “Oral Bioavailability: Basic Principles, Advanced Concepts and Applications (Hu M and Li XL editors, 1st Ed.).  July, 2011
  19. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Dong D, Wu B, Chow D, Hu M.Drug Metab Rev. 2012 Jan 18PMID:22251142
  20. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes.  Dong D, Ako R, Hu M, Wu B.Xenobiotica. 2012 Mar 2PMID:22385482
  21. Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on its ADME.  Yang Z, Kulkarni K, Zhu W, Hu M. Anticancer Agents Med Chem. 2012 May 2.PMID:22583407
  22. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways.  Jiang, W and Hu, M, RSC Adv., 2012, 2, 7948-7963
  23. Bioavailability Challenges Associated with Development of Saponins as Therapeutic and Chemopreventive Agents. Gao S, Basu S, Yang Z, Deb A, Hu M. Curr Drug Targets. 2012
  24. Quantitative prediction of glucuronidation in humans using the in vitro- in vivo extrapolation approach. Wu B, Dong D, Hu M, Zhang S. Curr Top Med Chem. 2013;13(11):1343-52.
  25. Oral Bioavailability Challenges of Natural Products Used in Cancer Chemoprevention, Gao S, Basu S, Yang G, Deb A, Hu M.  Progress in Chemistry, 25, 1554-1575, 2013
  26. Microbiota Structures, Human Health and Cancer Chemoprevention. Niu T, Hu M Progress in Chemistry, 25, 1602-1613, 2013
  27. Gender-dependent differences in uridine 5'-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics.  W Liu, K Kulkarni, M Hu,  Expert opinion on drug metabolism & toxicology, 9 (12), 1555-1569, 2013
  28. Disposition of Flavonoids Impacts their Efficacy and Safety. Yong MA, Zeng M, Sun R, Hu M. Curr Drug Metab. 15(9):841-64, 2014.

 

Autoimmune Journal Flyer