Management of Localized Prostate Cancer by Retroperitoneal Laparoscopic Radical Prostatectomy in Patients after Kidney Transplantation

Masashi Inui1, Junpei Iizuka2, Yasunobu Hashimoto1, Toshio Takagi1, Masayoshi Okumi1, Tsunenori Kondo2, Hideki Ishida2, and Kazunari Tanabe2

1Department of Urology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96, Owada-Shinden, Yachiyo, Chiba, Japan
2Department of Urology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, Japan

‘Corresponding author: Masashi Inui, Department of Urology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96, Owada-Shinden, Yachiyo, Chiba, Japan, Tel: +81-47-450-6000; E-mail: inui.masashi@twmu.ac.jp

Abstract

Purpose: Kidney transplant recipients (KTRs) are at high risk for de novo malignancies, and the incidence of prostate cancer (PCa) is about 2-fold higher in these patients than in the general population. Laparoscopic radical prostatectomy (LRP) is an accepted minimally invasive treatment for organ-confined PCa. However, the procedure is challenging in KTRs because of the potential risk of allograft and ureteral injury. In this study, we report our experience with LRP in patients following kidney transplantation.

Methods: Between 2006 and 2013, 234 consecutive LRPts were performed at Tokyo Women’s Medical University Hospital. We report the outcomes for three patients with prior renal transplants who underwent retroperitoneal LRP.

Results: The mean age of the patients was 56.3 years. The average operative time was 236 min (range, 180–315 min). The mean estimated blood loss was 54.6 mL, with no patients requiring blood transfusions. Although tension-free urethral anastomosis was achieved in every patient, anastomotic leakage occurred in two patients. The average hospital stay was 18.3 days, and the mean duration of urethral catheterization was 21 days. Serum creatinine levels remained unchanged in two patients who had functioning renal allografts. The third patient commenced hemodialysis postoperatively and resumed a continuous ambulatory peritoneal dialysis regimen two weeks after the operation.

Conclusion: Although technically challenging, retroperitoneal LRP remains an effective treatment option for localized PCa in patients who have undergone kidney transplantation.

Keywords: Prostate cancer; Laparoscopic prostatectomy; Kidney transplantation

Introduction

Kidney transplant recipients (KTRs) are at high risk for de novo malignancies. Genitourinary malignancies have been reported to represent the second most common type of malignancy in the KTR population in the United States. However, the incidence of prostate cancer (PCa) in renal transplant recipients is not more than around two times that of the general population. For clinically localized PCa, radical prostatectomy (RP) is the standard treatment. Laparoscopic RP (LRP) is an accepted minimally invasive treatment for organ-confined PCa. Robotic prostatectomy is also accepted as a standard treatment for localized PCa. However, KTRs are at risk for allograft and ureteral injury; therefore, sophisticated techniques are required. We report our experience with LRP in KTRs and discuss possible treatment choices for localized PCa in KTRs, especially surgical management.

Patients and Methods

Between 2006 and 2013, 234 consecutive LRPts were performed at Tokyo Women’s Medical University Hospital. Of the 234 patients, three patients had previously undergone living donor kidney transplantation. All three patients had American Society of Anesthesiologists Physical Status 3. The patients’ preoperative serum creatinine levels were measured on the day of surgery, and their postoperative levels were recorded on the date of discharge. Pathological assessments were performed at our institution, and the patients’ disease was staged using the 2002 tumor, node, and metastasis (TNM) staging guidelines.

Surgical Procedure and Postoperative Management

Under general anesthesia, the patients were placed in the supine position with their legs open. LRP was performed using five ports. The retroperitoneal space was directly entered through a small subumbilical incision and dilated using an endoscopic balloon dissection system (PDB’ Balloon, Covidien Japan, Tokyo, Japan). The camera trocar was placed, and abdominal pressure was maintained at 10 mmHg. The other four ports were placed as shown in Figure 1. The patients were then placed in a 15° Trendelenburg position. Adhesiolysis around the kidney allograft was performed carefully to avoid damage to the transplanted ureter. RP was then performed in accordance with the well-described technique of endoscopic extraperitoneal RP [1,2]. After releasing the prostate from its surrounding fatty tissue, the endopelvic fascia was sharply incised. The puboprostatic ligaments were divided, and the dorsal venous plexus was
The incidence of PCa is increasing year by year in Japan. PCa is the top in male cancer at estimated morbidity in 2015. KTRs comprise a

---

population usually considered at high risk for malignancies, with an estimated incidence that is 4–20-fold higher than that in the general population [3]. However, it has been reported that the standardized incidence ratio of PCa in KTRs is not very much higher than that in the general population. The reported prevalence of PCa in renal transplant patients ranges from 0.72 to 1% [4,5].

There are a variety of treatment options for localized PCa, including RP, radiation therapy, and active surveillance. Local treatment of PCa in renal transplant recipients is challenging, however, because they have renal allografts in the iliac fossa, which were anastomosed to the iliac vessels and the anterolateral wall of the urinary bladder. Active surveillance appears inappropriate because KTRs are at higher risk of disease progression than the general population. External beam radiation therapy can possibly cause ureteral obstruction, which might enhance the risk of graft dysfunction. The doses delivered to the ureteroneocystostomy have been calculated to range from <20 Gy to >45 Gy depending on bladder repletion [6]. RP is the gold standard in terms of therapeutic options for the management of localized PCa in the non-KTR population, but it carries a risk of injury to the renal graft, ureter, and bladder in renal transplant recipients.

Retropubic RP has been performed in selected renal transplant patients, and good results have been achieved in many centers. Perineal prostatectomy has also been reported to be successful [7]. The latter has the advantage of avoiding direct manipulation of the renal allograft or allograft ureter. LRP has advantages in that the magnified view enables precise dissection, control of blood loss, and early patient recovery. The first case of LRP was reported by Shah et al. in a 50-year-old renal transplant patient with localized PCa [8]. They advocated a transperitoneal approach because it avoids the adhesions present in the retroperitoneal space surrounding the graft. There are several reports regarding LRP in kidney allograft recipients. Most of the authors state that it is a technically feasible and safe procedure without major complications and with no different surgical challenges compared to the standard LRP. In contrast, Robert et al. reported that there was a higher rate of rectal injury in KTRs than in other patients, and iliac vein thrombosis resulted in graft loss [9]. Urethrovescial anastomosis can be more difficult because the renal allograft can interfere with the movements of the instruments. Furthermore, lymph node dissection on the ipsilateral side of the transplanted kidney is nearly impossible. This is another limitation from the point of view of cancer control. In our patients, we adopted an extraperitoneal approach. The extraperitoneal approach has several advantages. It does not require either a steep Trendelenburg position or high-pressure pneumoperitoneum, which could affect renal allograft circulation during the operation. This approach could also preserve peritoneal function and avert the development of gastrointestinal complications. However, although the extraperitoneal approach is ideal for patient safety, this procedure is more technically challenging than the transperitoneal approach. Although anastomosis leakage was frequently observed in our series, it was probably caused by delays in wound healing associated with immunosuppressive therapy, as opposed to being a technical problem.

Robot-assisted RP (RARP) appears to be the ideal surgical option for localized PCa in renal transplant recipients because of its high flexibility in instrument operation [10]. Jhaferi et al. reported the first case of RARP [11]. Since 2012, the Japanese health insurance system has covered RARP, and more than 200 RARPs have been performed, including a few procedures that were performed in KTRs in our institutes. The specific details of RARP are reported elsewhere.

In conclusion, although LRP is more technically challenging in KTRs than in non-transplant patients, it remains a treatment option for localized PCa in patients after kidney transplantation.

Reference