Challenges to Treat Interferon Resistance in Hepatitis C Virus Infected Patients

Haroon Hamed M1, Shafiqur Rehman2 and Ishtiaq Qadri*

1Department of Biological Sciences, Faculty of Science King Abdul-Aziz University, Jeddah
2Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore Pakistan

*Corresponding author: Ishtiaq Qadri, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 21589 Saudi Arabia

E-mail: ishtiaqmq@yahoo.com, ishtiaq@0262@yahoo.com

Keywords: Hepatitis C virus (HCV); Interferon (IFN); Protein kinase R (PKR); Interferon stimulatory genes (ISGs); Suppressor of cell signaling (SOCS)

The host response to virus is initiated by interferon α/β (IFN) production which is the baseline of immune resistance against viral pathogens. Hepatitis C Virus (HCV) infects about 170 million persons globally [1]. The major obstacle in the treatment of HCV is interferon resistance associated with each genotype of HCV, particularly the HCV GT1 and GT4. HCV eludes the host reaction over a multifaceted permutation of virus-host relations that interrupt intracellular signaling pathways and diminish the antiviral actions of IFN. Innate and adaptive immunity related to host responses and its regulation results the spread and replication of HCV. Consequently, a major challenge to the treatment responses is genetic diversity of virus and its linkage with initiation of chronic liver disease. Studies have revealed several host traits (gender, age, ethnicity, insulin resistance, obesity, alcohol intake, HIV-1 infection, degree of liver fibrosis and cirrhosis) with IFN responsiveness and of ascertaining its predictors that could be used to plan a suitable cure regimen. Factors that may contribute to the interferon resistance are multi-factorial but clearly 1) virus-host interaction, 2) IFN signaling cascade, 3) virus mutations, 4) immune responses, 5) host’s genetic makeup may contribute for the resistance phenotype.

Viral and Host Interaction

HCV infected chimpanzees have revealed a sturdy orientation of Interferon stimulating genes (ISGs) during the early days of the infection [4]. The exact mechanisms of IFN sensitivity are not entirely understood but possibly comprise the IFN inhibition via theretinoic acid inducible gene I (RIG-I) pathway via the cleavage of MAVS (mitochondrial antiviral signalling protein) by IFN responsiveness [2,3]. Intensive research efforts are desired to elaborate the molecular mechanisms involved in the IFN non-responsiveness and of ascertaining its predictors that could be used to plan a suitable cure regimen. Factors that may contribute to the interferon resistance are multi-factorial but clearly 1) virus-host interaction, 2) IFN signaling cascade, 3) virus mutations, 4) immune responses, 5) host’s genetic makeup may contribute for the resistance phenotype.

Role of pegIFNa, ribavirin and IFNλ signaling

IFNa-based therapies showed resistance in the patients with stimulated endogenous interferon system [8]. The most precise extrapolation of the pegIFNa and ribavirin reaction is accomplished by the expression of ISGs of the liver biopsies [9]. IFNa could surge high virological response in individuals with a pre-activated endogenous IFN response as USP18 (ubl carboxyl-terminal hydrolase) does not inhibit the IFNa signaling [10]. The SOCS-3 expression might be induced by core that quashes JAK-STAT signalling pathways [12]. Manifestation of the PIAS protein inhibitor of activated STAT) is tempt by HCV proteins which is probably arbitrated by PP2A (protein phosphatase 2A) signaling and STAT demethylation [13] resulting the STAT1 blockade. High level of IL-8 exhibited in HCV infected individuals [14]. Mutations at amino acids 70 and 91 of core deliberates resistance to IFN-α, related with a decline in IFN-α-mediated phosphorylation of STAT1 and STAT2 and expression of ISGs [15]. Some regions linked with IFN-α and ribavirin sensitivity have been documented within core region known as ISDR (a.a. 2209-2248) and IRRDR (a.a. 2334-2379) [16]. IFN-α resistance was observed in recombinant HCV genotypes of 1a and 3a identified substitutions of amino acids at position 414 of E2 and positions 345 & 348 of E1 [17]. The interface between E2 and PKR could be one contrivance by which HCV avoids the interferon [18]. Serine phosphorylation in E2 gene of HCV GT1 had expressed a role in interferon resistance [19]. Mutations related to treatment response have been reported in NS5A region which include ISDR, residues 2209 to 2248, and IRRDR, residues 2334 to 2379, in HCV genotype 1 [20,21]. These mutations were mainly observed in IFN resistant patients. Both core and NS5A express changes during the treatment so impact the therapy consequences [22]. In vitro study of HCV replicon cell lines, substitutions in NS3, NS4B, NS5A, and NS5B were linked with IFN non responsiveness [23]. In another study, overexpression of NS5A GT1 showed least IFN response as compared to GT-3 over sturdier binding to STAT1 [24].

Future Directions

The critical issues related to the IFN resistance need to be elucidated in more detail. The role of endogenous IFNαs, and molecular association between ISGs and IFNLR3 needs to be defined for further understanding the
mechanism of HCV interference with IFN signalling and different type of ISG [2]. The hepatologists and virologists need to be vigilant to define the emerging extend of directly-acting antiviral (DAAs) resistance during treatment. This combination of effective next generation of DAAs with new class of IFNαs should produce good results. The IFN resistance via weak immune responses will help in the design of therapy with chemokines and cytokines co-stimulation of ISG pathways in selected patients.

References