Chang-Deng Hu
chang-deng-hu
Professor
  • : 765-496-1971    : 765-494-1414

Department of Medicinal Chemistry and Molecular Pharmacology
Purdue University College of Pharmacy
USA

Education

1984 M.D. Bengbu Medical College, China (Medicine)
1987 M.S. Tongji Medical University, China (Cancer Immunology)
1997 Ph.D. Kobe University, Japan (Molecular Biology)
1997-2000 Assistant Professor Kobe University
2000-2002 Postdoc University of Michigan
2002-2003 Research Investigator University of Michigan

 

Biography

Dr. Chang-Deng Hu received his Ph.D. in molecular biology from Kobe University, Japan, in 1997. Prior to his Ph.D. study, he studied at Bengbu Medical College from 1979 to 1984, and at Tongji Medical University (currently Tongji Medical College of Huazhong University of Science and Technology) from 1984 to 1987 for his M.S. in cancer immunology. He also worked as an instructor in the Department of Epidemiology from 1987 to 1991 in the School of Public Health, Tongji Medical University, and as a visiting research associate at Kyoto University School of Medicine from 1991 to 1994. Dr. Hu has been working on various aspects of cancer including tumor immunology, cancer epidemiology, molecular oncology, Ras signaling, signal transduction, transcriptional regulation, protein-protein interactions and radiation biology. He has published over 60 peer-reviewed articles. As a postdoctoral researcher with Dr. Tom Kerppola at the University of Michigan, he pioneered the development of bimolecular fluorescence complementation (BiFC) and multicolor BiFC assays for direct visualization of protein-protein interactions in living cells. Over the past 12 years at Purdue, he has further improved the BiFC system and developed several novel BiFC-based technologies including BiFC-FRET. Using his novel BiFC technologies, his recent research is focused on translational research in prostate cancer and the development of methods for the discovery of small molecule inhibitors targeting protein-protein interactions.

Research Interest

  1. Protein-protein interactions
  2. Molecular imaging
  3. Transcriptional regulation of gene expression in cancer cells
  4. Epigenetic regulation of gene expression in cancer cells
  5. Prostate cancer development, progression and therapy
  6. Targeting protein-protein interactions for anti-cancer drug discovery

Professional Activities:

Honors and Awards:

09/91-09/92 

Fellowship of JSPS
Source: Japan Society for the Promotion of Science (JSPS)

09/92-09/93

Kyoto University Alumni Fellowship
Source: Kyoto University

04/94-03/97

Senshukai Scholarship (Ph.D. student)
Source: Kobe Senshukai Scholarship Foundation

04/98-03/99

President Young Investigator Award
Source: Kobe University

04/98-03/99

Young Investigator Award
Source: JSPS

04/99-03/01

Young Investigator Award
Source: Hyogo Prefecture Science and Technology Association

07/03-08/06

Walther Assistant Professor

 

Publications

Peer-reviewed Research Articles

  1. Xu, D., Zhan, Y., Qi, Y., Cao, B., Bai, S., Xu, W., Gambhir, S.S., Lee, P., Sartor, O., Flemington, E.K., Zhang, H., Hu, C.D., and Dong, Y. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res, 75:3663-3671 (2015)
  2. Suarez, C.D., Deng, X., and Hu, C.D.* Targeting CREB inhibits radiation-induced neuroendocrine differentiation and increases radiation-induced cell death in prostate cancer cells. Am J Cancer Res, 4:850-861 (2014)
  3. Zhang, H., Zha, Z. and Hu, C.D*. Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells. Biochem Biophys Acta, 1839:1330-1340 (2014)
  4. Hsu, C. and Hu, C.D.* Transcriptional activity of c-Jun is critical for the suppression of AR function. Mol. Cell. Endocrinol. 372:12-22 (2013)
  5. Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, Kester M, Wang HG. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 287:12455-12688 (2012)
  6. Hsu, C. and Hu, C.D.* Critical role of an N-terminal end nuclear export signal in regulation of ATF2 subcellular localization and transcriptional activity. J. Biol. Chem. 287:8621-8632 (2012)
  7. Deng, X., Elzey, B.D, Poulson, J.M., Morrison, W.B., Ko, S.C., Hahn, N.M., Ratliff, T.L., and Hu, C.D.* Ionizing radiation induces neuroendocrine differentiation in vitro, in vivo and in human prostate cancer  patients. Am. J. Cancer. Res. 1:834:844 (2011)
  8. Xing, J., Wang, S., Lin, F., Pan, W., Hu, C.D., and Zheng, C. A comprehensive characterization of interaction complexes of Herpes Simplex Virus type 1 ICP22, UL3, UL4 and UL20.5. J. Virol. 85:1881-1886 (2011)
  9. Kodama, Y. and Hu, C.D.* An improved bimolecular fluorescence complementation assay with high signal-to-noise ratio. Biotechniques, 49:793-805 (2010)
  10. Le, T.T, Duren, H.M., Slipchenko, M.N., Hu, C.D.* and Cheng, J.X. Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. J. Lipid  Res. 51:672-677 (2010)
  11. Hiatt, S.M., Duren, H.M. Shyu, Y., Ellis, R.E., Hisamoto, N., Matsumoto, K., Kariya, K., Kerppola, T.K., and Hu, C.D.* C. elegans FOS-1 and JUN-1 regulate plc-1 expression to control ovulation. Mol. Biol. Cell 20:3888-3895 (2009)
  12. Xu, Y., Yang, W.H., Gerin, I., Hu, C.D., Hammer, G.D., and Koenig, R.J. DAX-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor-1 in steroidogenesis. Mol. Cell. Biol. 29:1719-1734 (2009)
  13. Yuan, Z., Gong, S., Song, B., Mei, Y., Hu, C., Li, D., Thiel, G., Hu, C.D., and Li, M. Opposing role for ATF2 and c-Fos in c-Jun-mediated apoptosis induced by potassium deprivation in cerebellar granule neurons. Mol. Cell. Biol. 29:2431-2442 (2009)
  14. Deng, X., Liu, H., Huang, J., Cheng, L., Keller, E.T., Parsons, S.J., and Hu, C.D.* Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: Implications for disease progression. Cancer Res. 68:9663-9670 (2008)
  15. Hiatt, S.M., Shyu, Y., Duren, H.M, and Hu, C.D.* Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in living C. elegans. Methods, 45:185-191 (2008)
  16. Vidi, P.A., Chemel, B.R., Hu, C.D., Watts, V.J. Ligand-Dependant Oligomerization of Dopamine D2 and Adenosine A2A Receptors in Living Neuronal Cells. Mol. Pharmacol. 74:544-551 (2008)
  17. Shyu, Y., Suarez C.D., and Hu, C.D.* Visualizing ternary complexes in living cells using BiFC-FRET analysis. Nat. Protocol. 3:1693-1702 (2008)
  18. Shyu, Y.,  Fox, SM., Duren, HM., Ellis, R.E., Kerppola, T.K. and Hu, C.D.* Visualization of protein interaction in living Caenorhabditis elegans using bimolecular fluorescence complementation (BiFC) analysis. Nat Protocol., 4:588-596 (2008)
  19. Shyu, Y., Suarez, C., and Hu, C.D.* Visualization of AP-1-NF-B ternary complexes in living cells by using a BiFC-based FRET. Proc Natl Acad Sci U.S.A., 105:151-156 (2008)
  20. Tong, E.H.Y., Guo, J.J., Haung, A., Liu, H., Hu, C.D., Chung, S.S.M., and Ko, C.B. Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5. J. Biol. Chem. 281:23870-23879 (2006)
  21. Wang ,KZQ, Wara-Asparati, N., Boch, J.A., Yoshida, Y., Hu, C.D., Galson, D.L., and Auron, P.E. TRAF6 activation of PI3 kinase-dependent cytoskeletal changes is cooperative with Ras and mediated by an interaction with cytoplasmic c-Src. J. Cell Sci. 119:1579-1591 (2006)
  22. Liu, H., Deng, X., Shyu, Y., Li, J.J., Taparowsky, EJ., and Hu, C.D.* Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J., 25:1058-1069 (2006)
  23. Shyu, Y., Liu, H., Deng, X., and Hu, C.D.* Identification of new fluorescent fragments for BiFC analysis under physiological conditions. BioTechniques, 40:61-66 (2006)
  24. Grinberg A.,  Hu, C.D., and Kerppola T. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cel.l Biol. 24, 4294-4308 (2004)
  25. Hu, C.D. and Kerppola, T. Simultaneous visualization of interactions between multiple proteins in living cells using multicolor bimolecular fluorescence complementation analysis. Nat. Biotechnol. 21, 539-545 (2003)
  26. Hu, C.D., Chinenov, Y., and Kerppola, T Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell. 9, 789-798 (2002)
  27. Gao X., Satoh T., Liao Y., Song C., Hu, C.D., Kariya K., and Kataoka T. Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras. J. Biol. Chem. 276, 42219-42225 (2001)
  28. Jin T.-G., Satoh T., Liao Y., Song C., Gao X., Kariya K., Hu, C.D., and Kataoka T. Role of the CDC25 homology domain of phospholipase C-epsilon in amplification of Rap1-dependent signaling. J. Biol. Chem. 276, 30301-30307 (2001)
  29. Song#, C., Hu#, C.D., Masago, M., Kariya, K., Yamawaki-Katatoka, Y., Shibatohge, M., Sen, H., Wu, D., Satoh, T., and Kataoka, T. Regulation of a novel human phospholipase C, PLC-through differential membrane targeting by Ras and Rap1 J. Biol. Chem. 276, 2752-2757 (2001). #Equal contribution to this work
  30. Liao, Y., Satoh, T., Gao, X., Jin, T.-G., Hu, C.D., and Kataoka, T. RA-GEF-1, a guanine nucleotide exchange factor for Rap1, is activated by translocation induced by association with Rap1GTP and enhances Rap1-dependent B-Raf activation. J. Biol. Chem. 276, 28478-28483 (2001)
  31. Sen, H., Hu, C.D., Wu, D., Song, C., Yamawaki-Katatoka, Kotani, J., Okada, T., Shima, F., Kariya, K., and Kataoka, T. Role of Raf-1 conserved region 2 in regulation of Ras-dependent Raf-1 activation. Biochem. Biophys. Res. Commun., 271, 596-602 (2000)
  32. Shima, F., Okada, T., Kido, M., Sen, H., Tanaka, Y., Tamada, M., Hu, C.D., Yamawaki-Kataoka, Y., Kariya, K., and Kataoka, T. Association with CAP forms a second Ras-binding site of yeast adenylyl cyclase which mediates activation by posttranslationally modified Ras protein. Mol. Cell. Biol. 20, 26-33 (2000)
  33. Liao, Y., Kariya, K., Hu, C.D., Shibatohge, M., Goshima, M., Okada, T., Watari, Y., Gao, X., Jin, T.-G., Yamawaki-Katatoka, Y., and Kataoka, T. RA-GEF, a novel Rap1A guanine nucleotide exchange factor containing a Ras/Rap1A-associating domain, is conserved between nematode and humans. J. Biol. Chem. 274, 37815-37820 (1999)
  34. Tanaka, Y., Minami, Y., Mine, S., Hirano, H., Hu, C.D., Fujimoto, H., Fujii, K., Saito, K., Tsukada, J., van Kooyk, Y., Figdor, C. G., Kataoka, T., and Eto, S. H-Ras signals to cytoskeletal machinery in induction of integrin-mediated adhesion of T cells. J. Immunol., 163, 6209-6216 (1999)
  35. Okada, T., Hu, C.D., Jin T.-G., Kariya, K., Yamawaki-Katatoka, Y., and Kataoka, T. The strength of interaction at the Raf cysteine-rich region domain is a critical determinant of response of Raf to Ras family small GTPase. Mol. Cell. Biol. 19:6057-6064 (1999)
  36. Hu, C.D., Kariya, K., Okada, T., Qi, X., Song, C., and Kataoka, T. Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation , J. Biol. Chem., 274, 48-51 (1999)
  37. Watari, Y., Kariya, K., Shibatohge, M., Liao, Y., Hu, C.D., Goshima, M., Tamada, M., Kikuchi, A., and Kataoka, T. Identification of Ce-AF-6, a novel Caenorhabditis elegans protein, as a putative Ras effector, Gene, 224, 53-58 (1998)
  38. Shibatohge, M., Kariya, K., Liao, Y., Hu, C.D., Watari, Y., Goshima, M., Shima, F., and Kataoka, T. Identification of PLC210, a C. elegans homolog of phospholipase C, as a putative effector of Ras, J. Biol. Chem., 273, 6218-6222 (1998)
  39. Shirouzu, M., Morinaka, K., Koyama, S., Hu, C.D., Hori-Tamura, N., Okada, T., Kariya, K., Kataoka, T., Kikuchi, A, and  Yokoyama, S. Interactions of the amino acid residue at position 31 of the c-Ha-Ras with Raf-1 and RalGDS, J. Biol. Chem., 273, 7737-7742 (1998)
  40. Ohnishi, M., Yamawaki-Kataoka, Kariya, K., Tamada, M., Hu, C.D., and Kataoka, T. Selective inhibition of Ras interaction with its particular effector by synthetic peptides corresponding to the Ras effector region, J. Biol. Chem., 273, 10210-10215 (1998)
  41. Yanagihara, C., Shinkai, M., Kariya, K., Yamawaki-Kataoka, Y., Hu, C.D., Masuda, T., and Kataoka, T. Association of elongation factor 1 and ribosomal protein L3 with the proline-rich region of yeast adenylyl cyclase-associated protein CAP. Biochem. Biophys. Res. Commun., 232, 503-507(1997)
  42. Hu, C.D., Kariya, K., Kotani, G., Shirouzu, M., Yokoyama, S., and Kataoka, T. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with Ras-dependent activation of Raf-1. J. Biol. Chem., 272, 11702-11705 (1997)
  43. Tamada, M., Hu, C.D., Kariya, K., Okada, T., and Kataoka, T. Membrane recruitment of Raf-1 by association is not only the major function of Ras in Raf-1 activation, Oncogene, 15, 2959-2964 (1997)
  44. Hu, C.D., Kariya, K., Tamada, M., Akasaka, K., Shirouzu, M., Yokoyama, S., and Kataoka, T.  Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem., 270, 30274-30277 (1995)
  45. Hu, C.D.*, Zhan, Z.-L., and He, S.-P. Study on the mutagenicity of trichloromethane. Chinese J. Public Health, 5, 220-222 (1990) (in Chinese)
  46. Hu, C.D.*, Zhan, Z.-L. and He, S.-P. Study on the influential factors and the sensitivity of microtitre fluctuation test. Journal of Healthy and Toxicology, 4, 115-118 (1990) (in Chinese)
  47. Hu, C.D.* and Zhang, X.-H. Influence of EM on spleen cells NK activity and its mechanisms. Chinese Journal of Microbiology and Immunology, 8, 11-14 (1989) (in Chinese)
  48. Hu, C.D. * and Zhang, X.-H. Influence of EM on specific immune responses in normal Swiss mice. Chinese Journal of Immunology, 4, 176-178 (1988) (in Chinese)

Invited Peer-reviewed Review Articles

  1. Hu, C.D. *, Choo, R., and Huang, J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol, Apr 14;5:90. Doi: 10.3389/fonc.2015.00090 (2015)
  2. Kodama, Y. and Hu, C.D.* Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. Biotechniques, 53:285-298 (2012)
  3. Shyu, Y. and Hu, C.D.* Recent advances in fluorescence complementation-based technologies. Trends Biotechnol. 26:622-630 (2008)
  4. Hu, C.D.*, Zhang, X.-H., and Bi, E.-H. Role of macrophages in the modulation of NK activity. Foreign Medicine, Part of Immunology, 10, 16-20 (1987) (in Chinese).

Invited Review Article (Not peer-reviewed)

  1. Shyu, Y., Akasaka, K., and Hu, C.D*. Bimolecular fluorescence complementation (BiFC): A colorful future in drug discovery. Sterling-Hoffman Life Science Journal, July, 2007.

Book Chapters

  1. Pratt, E.P.S., Owens, J.L., Hockerman, G.H., and Hu, C.D. Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interactions and assessment of subcellular localization in live cells. High resolution imaging of proeins in tissues and cells: light and electron microscopy methods and protocols (Ed, Schwartzbach, S.D., Skalli, O., and Schikorski, T.), Springer (2015).
  2. Ejendal, K.F.K., Conley, J.M., Hu, C.D. and Watts, V.J. Bimolecular fluorescence complementation analysis of G protein-coupled receptor dimerization in living cells. Methods Enzymol., 521:259-279 (2013).
  3. Kodama, Y. and Hu, C.D.* Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interaction: How to calculate signal-to-noise ratio. Methods Cell Biol., 113: 107-121 (2013).
  4. Vidi, P.A., Przybyla, J.,  Hu, C.D., and Watts, V.J. Visualization of G protein-couple receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC). Curr. Protoc. Neurosci., Unit 5.29.1-5.29.15 (2010).
  5. Hu, C.D., Grinberg, A.V. and Kerppola, T.K. Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis. (ed. Coligan JE,  Dunn BM, Speicher DW, Wingfield PT) Curr. Protoc. Protein Sci. 41:19.10.1-19.10.21. Hoboken, John Willey & Sons, (2005).
  6. Hu, C.D. and Kerppola TK. Direct visualization of protein interactions in living cells using bimolecular fluorescence complementation analysis. Protein-Protein Interactions (ed. P. Adams and E. Golemis), Cold Spring Harbor Laboratory Press. Pp673-693, (2005). 
  7. Hu, C.D., Grinberg A., and Kerppola TK. Visualization of protein interaction in living cells using bimolecular fluorescence complementation (BiFC) analysis. In Curr. Protoc. Cell Biol.  (ed. Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM) pp. 21.3.1-21.3.21.  Hoboken, John Willey & Sons, (2005). 
  8. Kataoka, T., Kariya, K., Yamawaki-Kataoka, Y., Hu, C.D., Shirouzu, M., Yokoyama, S., Okada, T., and Shima, F. Isoprenylation-dependent and independent interaction of Ras with its effectors.  In Kuzumaki, N. Cytoskeleton and G-Protein in the Regulation of Cancer. Hokaido University Medical Library Series, 37, 141-146 (1998).

 

Durg-research-flyer