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Matrix-assisted laser desorption ionization (MALDI) mass 
spectrometry imaging (MSI) is a powerful technology for studying the 
distribution of proteins, lipids, and chemicals within the organisms, 
including plants and animals. The major advantage of MSI is its ability 
to produce a simultaneous localization and identification of a parent 
molecule and its metabolites without labeling and without any prior 
knowledge. MSI has been extensively employed to detect the differentiated 
pattern of lipids in various organs in different diseases, such as brains in 
Alzheimer’s disease and kidneys in chronic kidney diseases. However, 
the major obstacle of using MSI in lipid detection is its poor detection 
sensitivity of some classes of lipids due to ion suppression effects [1]. 
Especially when phosphatidylcholines (PCs), the major components 
of all eukaryotic plasma membranes, is presented in the sample, their 
quaternary ammonium will intensely decrease the ion yields for all other 
lipids in positive ion mode MSI measurements [2]. Although these ion 
suppression effects are usually less significant in the negative ion mode, 
plenty of lipid classes cannot be analyzed at all or demonstrate only low 
ionization efficiencies in negative ion mode MALDI measurements [e.g., 
PCs, di- and triacylglycerols (DAGs/TAGs)].

Several solutions have been proposed to solve this problem. For the 
instrumentation approach, a “MALDI-2” technique is introduced. A 
secondary MALDI-like ionization processes are initiated by a post-
ionization laser beam intersecting the expanding analyte-matrix 
plume [3]. This is achieved by intercepting the particle plume within 
nitrogen cooling gas environment with a pulsed ultraviolet (UV) laser. 
This technique increases the detection intensities of several classes of 
membrane lipids up to two orders of magnitude higher, especially for 
cholesterol, phosphatidylethanolamine (PE), plasmalogens (PE-O), 
phosphatidylserine (PS), and neutral glycosphingolipids (GSLs) such 
as galactosylceramide (GalCer) because they are usually difficult to be 
imaged by conventional MALDI-MSI [3]. The major drawback of this 
modification is the requirement of a complex instrumentation which is 
not commercially available.

From the approach of matrices, apart from the conventional matrix, 
2,5-dihydroxybenzoic acid (DHB), new matrices are developed to 
“unmask” certain lipid classes, such as GSLs, in complex mixtures [4-7] 
where most of the detected species are sodium and potassium adducts. 
Several new matrix solutions are also developed to maximize the detection 
of [M-H]− ganglioside species, such as 2,6-dihydroxyacetophenone 
[DHA]/ammonium sulfate 3 mM for extracted gangliosides and DHA/
ammonium sulfate125 mM/heptafluorobutyric acid [HFBA] 0.05% for 
imaging applications dissolved in 50% ethanol [8].

Owing to the fast growth of nanomaterials, applications of nanoparticles 
with mass spectrometric analyses become more popular. This approach 
offers several advantages over mass spectrometry using conventional 

organic matrices in many ways, including high absorption coefficient, 
excellent stability and biocompatibility, ease of preparation and chemical 
modification [9]. In addition, the mass spectra are simplified because 
chemical noise by the matrix is minimized [10]. High quality images 
of the regional distribution of several lipid classes can be obtained as 
nanoparticle matrix layer is stable, reproducible, and homogenous [11].

Initially, nanoparticles with iron oxide have been used to detect the 
distributions of PC and GalCerin positive ion mode and sulfatides in 
negative ion mode [12,13]. However, the detection of sulfatides with 
nanoparticles is unexpectedly weaker than that with DHB. For this reason, 
several groups tried to develop a new matrix system with nanoparticles for 
MSI analyses to obtain higher spatial resolution and sensitivity. The core 
metals focus on gold, silver, and their mixture [14-16]. Nano silver particles 
(AgNPs) and gold nanoparticle (AuNPs) have been demonstrated to be 
useful for detecting neutral lipids (e.g., TAGs, cholesterol) as [M+Au]+ or 
[M+Ag]+ adducts [11,17,18] and ganglioside distribution [19].

Gold nanoparticles (AuNPs), which was modified with alkylamine, 
have been used to visualize the distribution of GSLs in biological tissue 
sections. AuNPs are known to ionize GSLs with high sensitivity [15,20]. 
Application of AuNPs allows sphosphatidyl inositol (PI), sulfatides, and 
gangliosides species (GM1, GM2, GM3, GD1, and GD3) to be detected 
with high sensitivity in negative ion mode [18]. Application of AuNPs to 
the analysis of mouse brains achieved the desired visualization of minor 
components of GSLs [18]. On the other hand, AgNPs have also been 
shown to be effective when analyzing neutral lipids such as cholesterol, 
ceramides, DAGs, and TAGs in positive ion mode [11]. Unfortunately, 
these nanoparticle matrices also induce a higher thermal load during the 
laser-induced desorption than classical MALDI matrices and this higher 
load can cause fragmentation of more complex lipids (e.g., for TAGs) [21]. 
In addition, these additional steps also result in a loss of the biomolecules, 
especially for the low abundant lipids.

Biochemical methods have also been tested to reduce ion suppression 
by enzymatic degradation of PCs. Phospholipase C (PLC) has been used 
to cleave PLs next to the phosphate moiety and eliminate the charged 
head group without impairing the hydrophobic membrane anchor (a 
DAG molecule for diacyl-PL precursors). Sparvero et al. [22] applied the 
on-tissue PLC digestion with additional chemicals to cross-linking of 
carboxyl/amino-containing molecules and demonstrated an improvement 
for detecting mitochondrial cardiolipins and brain gangliosides by 
MALDI-MSI at a lateral resolution of 50–200 µm in the negative ion mode 
[22,23]. However, the positive ion mode MALDI-MSI analysis of lipids 
following a pure PLC treatment was not reported in these two studies.

Vens-Cappell et al. [24] recently demonstrated a pure PLC treatment 
on the positive ion mode MALDI-MSI analysis of lipids. They performed 
an on-tissue PLC digestion on 16 µm-thick fresh-frozen murine brain 
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In conclusion, this on-tissue PLC digestion has been demonstrated 
to successfully enhance MALDI-MSI of neutral GSLs by reducing ion 
suppression effects. This method is superior to the present methods as it 
is easily to be implemented without any sophisticated modification on the 
MALDI-MS or matrices. This method will be beneficial for future analysis 
on GSLs in human diseases.
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and kidney organ sections to obtain high contrast MALDI- (mass 
spectrometry) MS images of GSLs. PLC was simply diluted in water and 
adjusted to an enzymatic activity of 50 U/mL. 40 µL of PLC solution was 
spotted onto the sections for 30 min at 37°C. The reaction was stopped 
by removing bulk liquid and air-drying. After having coated with DHB 
matrix with a sublimation/recrystallization protocol to produce average 
crystal sizes of about 2 to 3 µm [3]. MALDI-MS imaging was performed 
with a modified Synapt G2-S mass spectrometer (Waters, Manchester, 
UK) using an effective focal spot size of ∼5 µm in diameter [3]. Each pixel 
was irradiated with 30 laser pulses.

By comparing with two adjacent coronal brain sections, one of which 
was PLC-treated, the MS images and corresponding mass spectra 
demonstrated an elevation in the ion abundance of GalCer(d18:1/
C24:1) and the other nine detected GalCerlipoforms by a factor of 
about 10 [24]. The overall GalCer distribution was further confirmed 
by an immunohistochemical staining performed with the PLC-treated 
section after the MS measurements. In addition, the PLC treatment also 
demonstrated an increase in signals of cholesterol with about 5-times 
higher intensities. It is because phospholipid (PL) degradation will 
unmask ion species that display masses being near-isobaric to those of 
abundant PCs. For example, [GalCer (d18:1/C24:1)+Na]+ ion signals 
at m/z 832.66 are often masked by the more intense signals of [PC 
(38:4)+Na]+, exhibiting an about 80 mDa lower mass.

One of the challenges is whether any diffusion of GalCer, cholesterol, or 
remnant molecular PLs occurs notably after incubating the sections with 
aqueous enzyme solution. Fortunately, there was no such diffusion to be 
observed, suggesting that the overall structural integrity of the cell plasma 
membranes remained widely preserved [24].

As DAG fragments and cleaved hydrophilic head groups were 
produced during PLC-treatment, the authors also examined whether 
these fragments were detected and interfere the final images. The results 
showed that these fragments were detectable in tissue with comparatively 
low signal intensities [24]. In contrast, the cleaved hydrophilic head 
groups were found in both reaction solution and a smeared distribution 
across the whole tissue sections.

In common, PLC solutions are generally buffered by using a HEPES 
buffer to obtain an optimal pH at about pH 7. It is also known that 
these buffers strongly interfere with the analyte/matrix crystallization to 
decrease the ion yields. Thus, such buffered PLC solution will significantly 
reduce the sensitivity of MALDI-MS analyses. To bypass such situation, 
PLC in this study was simply diluted in water, instead of a buffer [24]. 
A time-course study using mouse brain sections showed that 30 min of 
PLC incubation at 37°C was sufficient to provide a complete degradation 
of PCs and a concomitant maximization of GSL ion signals, suggesting 
that the tissue sections seem to retain an adequate endogenous content of 
salts to ensure the same PLC activity in an aqueous as well as in a buffered 
solution [24]. However, long incubation, such as overnight incubation for 
16 hours, resulted in signal reduction for ions of other less concentrated 
PLs. This may be due to degradation of the PLC during long incubation.

Another useful finding is a demonstration of a signal enhancement 
for GSLs even when tissue sections have already been “pre-analyzed” by 
standard MALDI-MSI (e.g., to first record PC profiles). The authors just 
simply removed the matrix coating from the slide by rinsing with water 
and 0.1 M sodium acetate and then applied PLC and a second DHB matrix 
coating [24]. Then they performed a second scan on the same slide. The 
results demonstrated the signal enhancement for GSLs was still observed. 
These results suggest a possibility of this sequential approach although a 
slight reduction in the lateral resolution to approximately 20-30 µm was 
observed. This phenomenon may be due to the repeated analyte extraction 
from the tissue by matrix sublimation and recrystallization and the matrix 
washing step.
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