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Abstract

Due to its success in achieving the majority of wastewater treatment objectives, Membrane Bioreactor Technology (MBR) has replaced the
Conventional Activated Sludge Process (CAS) as the leading method for treating wastewater. Nowadays, the treatment of industrial wastewater
become one of the world’s major concerns, MBR technologies are used more frequently. This technology has a bright future in wastewater treatment
(especially industrial wastewater). In general, this article is designed to give a general view of various aspects of an MBR, with the aim of addressing
and overcoming any potential drawbacks or limitations. In this work, the fouling in MBR technology its variations and mechanisms, influencing
factors are also discussed in detail. However, membrane fouling is thought to be the biggest challenge this technology faces. One of the main
agents that causes the fouling of the membrane is Extracellular Polymeric Substances (EPS), which results in a decrease in filterability and a decline
in membrane flux, which affects the membrane lifespan. Furthermore, it looks into how to minimize membrane fouling in MBR systems and offers
biological tactics to lessen the likelihood of membrane fouling in MBR technology. Finally, this work quoted also how artificial technology might help
to increase removal effectiveness and prevent filtering membrane obstruction.

Keywords: MBR technology; Membrane fouling; Control; Mechanisms; Operating parameters

Abbreviations: MLSS: Mixed Liquor Suspended Solids; EPS: Extracellular Polymeric Substances; SMP: Soluble Microbial Products; HRT: Hydraulic
Retention Time; TMP: Transmembrane Pressure; SRT: Sludge Retention Time; Mbrs: Membrane Bioreactor System; MIEX: Magnetic lon Exchange

Resin; BAC: Biological Activated Carbon; EO: Electroxidation

Introduction

In recent decades, several factors like population growth,
urbanization, industrialization, climate change, and the expansion
of irrigated agriculture have contributed to a change in the global
demand for freshwater. This has resulted in water scarcity becoming
a significant challenge for almost all countries worldwide [1]. To
address this issue, there is currently a high demand for recycling
water through the use of advanced treatment technologies, such as
industrial and municipal wastewater treatment, in order to alleviate
water shortages. The World Economic Forum’s 2019 report recognized
freshwater scarcity as one of the biggest global risks with potential
large-scale impacts in the next decade. In light of this, industries
worldwide need to place a greater emphasis on adopting sustainable
water treatment practices, wastewater recycling, and wastewater
reuse for various purposes. These efforts can help reduce the strain
on freshwater supplies and promote a more sustainable approach to
water management.

The process of biological wastewater treatment utilizes
microorganisms such as bacteria to eliminate pollutants from water.

This type of treatment employs a variety of techniques, ranging from
conventional activated sludge methods to cutting-edge technologies
like membrane bioreactor systems (MBRs). Biological wastewater
treatment technologies have gained popularity worldwide because
they are both effective and cost-eflicient compared to many chemical
and physical treatment processes.

Membrane bioreactor systems (MBRs) are a compact technology
that combines the activated sludge process with membrane filtration
in order to treat and recycle wastewater. The membrane bioreactor has
been widely utilized for different wastewater treatment (municipal and
industrial) and reclamation [2]. This technology integrates a suspended
growth bioreactor with a permeable membrane mechanism, such as
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), or
reverse osmosis (RO). MBRs are recognized as a well-established and
mature technology for wastewater treatment globally, demonstrating
significant pollutant removal efficiency. The MBR market reached a
value of US$3.3 billion in 2021, and it is projected to reach US$5.8
billion by 2027 according to IMARC Group projections. MBRs are
considered a groundbreaking innovation in wastewater treatment,
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addressing the limitations of conventional activated sludge processes,
such as the need for large secondary clarifiers, challenges with liquid-
solid separation, excess sludge production, and difficulties in removing
recalcitrant compounds [3].

In an MBR, membrane filtration is combined with a traditional
biological treatment system to effectively separate liquids from solids
[4]. MBRs can handle higher organic loads compared to conventional
treatment methods (ASP), making them suitable for treating wastewater
with specific components that may be hazardous to microbial activity
[5]. The long-lasting microbial populations in MBRs contribute to
their resilience against environmental changes post-treatment. In
addition, MBRs result in improved quality of the treated effluent. The
biological component of MBRs, especially in the context of industrial
wastewater, plays a crucial role in their effectiveness and efficiency
[6]. The microorganisms in MBRs biodegrade organic components
in the raw water prior to membrane filtration. Ghimire N, et al.,
Razavi SMR, et al., Le-Clech P, et al. [7-9] reported that temperature,
pH, wastewater composition, F/M ratio (food to microorganisms),
airflow rate, MLSS concentration (mixed liquor suspended solids),
SRT (sludge retention time) and HRT (hydraulic retention time) are
all parameters that influence microbial activity and the treatment
of wastewater in the bioreactor. MBRs are resilient systems that can
process wastewater from a variety of industrial sources. Studies by Liu
J, et al. [10] and Mubbshir S, et al. [11] demonstrated that a two-stage
Anoxic/Oxic-MBR system was effective in removing pollutants from
landfill leachate, achieving average removal efficiencies of 85.6% for
COD and 80.7% for TN [10,11]. Furthermore, Ariaga S, et al.[12], the
MBR polishing step primarily removes particulate matter, it reduces
the cost of pathogenic bacteria removal and inactivation [12]. Sun ],
al. [13] conducted research on the effectiveness of designed anoxic/
aerobic MBR system for hypersaline municipal sewage treatment, in
a processing zone (China). The sewage comprised roughly of 80%
industrial wastewater and 20% sewage, containing approximately,
1000mg/1 [13]. In a separate study, Roy D, et al. [14] proposed the use
of a lab-scale submerged membrane bioreactor for treating synthetic
leachate for 205 days with four ammoniacal nitrogen concentrations
(220, 340, 665, and 1040 mg/L). Their findings concluded that the
model was effective in treating high-strength ammoniacal nitrogen
[14].

The MBR process has a number of benefits when compared to
the ASP, the MBR treatment can achieve high removal efficiencies in
domestic wastewater treatment and that MBR permeate is suitable for
urban, agricultural, and recreational reuse based on the quality criteria
for water reuse [15].

In MBR systems, the membranes replace the need for secondary
clarifiers. This leads to a significant reduction in required plant area, as
MBRs operate at shorter HRTs and eliminate the need for secondary
clarifiers. However, it is worth noting that the MBR method has a few
drawbacks, such as the challenge of controlling membrane fouling and
increased energy costs [15].

MBR technology has become increasingly popular due to its
ability to produce high-quality water, cost-effectiveness, widespread
acceptance, and the potential to upgrade existing wastewater treatment
plants [16-18].

It is worth noting that academic studies have been conducted to
address the two main drawbacks of MBR technology mentioned
earlier: membrane fouling and energy consumption. Membrane
fouling remains a significant issue in MBR technology [19,20]. It

leads to a decline in membrane performance and lifespan, resulting in
increased maintenance and operating costs [21].

The accumulation of suspended particulates such as
microorganisms, cell debris, colloids, solutes, and sludge flocks are
responsible for membrane fouling. These substances are deposited on
the surface and within the pores of the membrane, leading to pore
clogging and decreased membrane permeability [22].

Membrane fouling in wastewater treatment systems occurs when
solid particles are deposited on the surface of the membrane and
colloidal particles build up within its pores [23]. This buildup impairs
the hydraulic performance of the membrane, causing a decline in
permeability and an abrupt increase in transmembrane pressure,
which leads to higher maintenance and operating costs due to
increased energy consumption and frequent membrane cleaning
operations [24,25]. Recent studies have shown that the specific amount
of EPS directly correlates with the specific cake resistance, which
further exacerbates membrane fouling [26]. To combat this issue,
new approaches are needed to reduce membrane fouling, and further
research is required to gain a better understanding of the composition
and behavior of fouling biopolymers in MBR fouling.

Membrane fouling is a critical issue that limits its application in
wastewater engineering. The composition of suspended solids in the
mixedliquor suspended solids (MLSS) is theleading cause of membrane
fouling [27]. This has prompted recent research into membrane
fouling mitigation and expanding the use of MBR technology. This
review aims to investigate the reactions and kinetics of biological
treatment, assess recent progress in understanding the mechanisms
and roles involved in fouling, and propose potential solutions for
controlling fouling in MBR systems. The review extensively cites the
work of many researchers to gain a comprehensive understanding of
the major problem in MBR technologies, which is membrane fouling.

Drawing upon recent and relevant literature on membrane fouling,
this article provides an overview of the fundamental principles of
membrane fouling and the advancements in approaches to reduce
fouling in MBRs. It covers essential information on membrane
fouling, including classifications specific to MBRs, and explores the
various variables that influence membrane fouling in these systems.
Furthermore, the review offers an in-depth analysis of the current
research trends in managing membrane fouling in MBRs, shedding
light on the latest developments in this field.

Biological Treatment

Type of microorganisms

The majority of microorganisms found in a biological reactor are
bacteria, making up more than 90% of the total population. Other
organisms present include protozoa, metazoa, filamentous bacteria,
algae, and fungi [28]. These bacteria can form pairs, chains, or clusters,
while some may exist as single cells. They have diverse metabolic
capabilities, utilizing various energy sources such as electron donors,
electron acceptors, and carbon sources. These organisms are capable
of breaking down various organic and inorganic contaminants, as well
as creating the ideal environment for treating specific components
present in wastewater. A research project by Shchegolkova NM, et
al. [29] used 16S rRNA gene sequencing to analyze the composition
of bacteria present in activated sludge and wastewater from three
different treatment plants. The research also included a heat map
highlighting the top 40 families of bacteria in activated sludge, which
accounted for 94.2-97.5% of all bacteria [29].
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Bacteria and other microorganisms gather on the membrane’s
surface, leading to the development of biofilms. As opposed to
solitary, free-floating cells, biofilm cells are embedded in a self-made
extracellular polymeric substance (EPS) matrix. The EPS contains
proteins and carbohydrates, which contribute to the adhesive
properties of the biofilm. However, this adhesive nature of biofilms
poses a significant challenge in Membrane Bioreactor (MBR) plants
[30].

Microbial stoichiometry and kinetics in a bioreactor

In the evaluation of biological treatment performance, balanced
microbial stoichiometric equations play a vital role. These equations
bear a resemblance to chemical stoichiometric equations but hold
immense importance in the biological treatment process. It is
important to note that the substrate in the microbial kinetics equation
serves a dual purpose, providing energy and aiding the synthesis of
biomass. Microorganisms not only act as catalysts for biological
reactions but also undergo reproduction, leading to their growth and
proliferation throughout the treatment process.

The amount of biomass produced compared to the amount of
substrate (such as glucose) consumed can be expressed as biomass
yield or growth and is determined by various factors such as microbial
composition and growth conditions [30,31].

To understand and analyze the reaction in biological processes, it
can be difficult to accurately estimate the speed of the reaction, due to
the need to include a wide range of elements in the equation (Table 1).
It is important to consider the source and destination of electrons, the
necessary nutrients, the amount of biomass present, and the oxidized
products when constructing a balanced microbial stoichiometric
equation.

Determining the microbial reaction rate is of great importance
for various purposes, such as estimating the required volume of
the bioreactor and the concentration of biomass needed to achieve
a specific outcome. Additionally, the reaction rate can be used to
estimate the performance of the bioreactor under specific operating
conditions and assist in the design process. To facilitate this, specific
software tools like BioWin, STOAT, GPS-X, and WEST have been
developed [35].

These software tools use microbial kinetics and establish mass
balance equations to reveal important bioreactor performance
indicators, such as biomass production rate and substrate
concentration in the effluent. Microbial kinetics primarily focuses on
optimizing microbial growth rate and substrate utilization [34]. The
breakdown of biodegradable substrates through metabolism leads to
microbial growth. However, it is essential to note that not all materials
in the incoming wastewater are biodegradable. Therefore, determining
the amount of biodegradable material in the incoming wastewater is
essential for accurately calculating the microbial growth rate.

Furthermore, as microorganisms grow, they also undergo
decomposition. The difference between the growth rate and the
decomposition rate is referred to as the net growth rate. This net
growth rate can be defined as follows:

Ly g.net = rgrowth + rdecay
dx SX
};;net :_:;l’n—_kdX
' dt Ks+S

Where:

I, o i the net growth rate (g, ;m?/day);

X is the biomass concentration (g, /m?);

VSS is the Volatile suspended solids;

S is the biodegradable substrate concentration (g, / m’);

1, shows the maximum specific growth rate (day™);

K, and k, represent half saturation constant for biodegradable
/m3)r

substrate (

gCOD

(@nen 15 the net growth rate (dm—) [32].
' ay

This coeflicient is critical for understanding how microorganisms
utilize their food source, also known as substrate. The rate of substrate
uptake is strongly related to the rate of microorganism growth and the
biomass yield coefficient.

Although the growth rate of microorganisms is important,
engineers are primarily concerned with the substrate removal rate
because it indicates the progress of the treatment [35].

In addition, the rate of volatile Suspended solids (VSS) production
in the bioreactor is a critical parameter for designing and operating
bioreactor facilities. The mixed liquor VSS in the bioreactor are
produced from three main sources:

Microorganisms’ growth

Non-biodegradable VSSs resulting from biomass decomposition
cannot be utilized by microorganisms as substrates.

Non-biodegradable VSSs are generated by the influent, which
depends on the characteristics of the wastewater.

The total VSS production rate (Rvss’t) can be expressed using the
following formula:

_ M, 8X

S Ks+ S

-K, X+ fk, X+ XI;Q

Where:

f, is the fraction of the product of biomass decay that accumulates
in a bioreactor;

X, is concentration of non-biodegradable;

>

g Vss
)

VSS in waste water influent (=5
m

3
. m .
Q and V represent the influent flow rate (——)and bioreactor
volume m’ separately day

MBR Application in Industrial Wastewater

This wastewater can originate from a range of industries including
agriculture, food processing, pharmaceuticals, dye manufacturing,
metalworking, tanneries, petrochemicals, and textile production, as
mentioned in references [36,37]. Despite the varying sources, high-
strength industrial wastewater generally contain similar substances
such as organic matter, nutrients, viruses, bacteria, microalgae, and
toxic compounds [36] (Table 2).

Phuong NTT, et al. [41], reported that the most effective Organic
Loading Rate (OLR) for treating oily wastewater in a Membrane
Bioreactor (MBR) was 11 kg COD/m?/day. This resulted in 97.93%
removal efficiency for Chemical Oxygen Demand (COD), 71.04% for
Total Nitrogen (TN), and 79.04% for Total Phosphorus (TP).

Additionally, Ahmadi M, et al. [42] assessed the effectiveness of a
lab-scale MBR in treating oily wastewater from an oil refinery, with
different mixed liquor-suspended (MLSS) solids (6.5 and 8.5 g/L) and
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Table 1: Different kinetic coefficients of many bacteria existing in MBRs.

MBR Maximum Half-saturation Deca
. Biomass type Yield coefficient specific growth .. X .y References
characteristics rate coefficient coefficient
; mgvss mg02
Heterotrophic | 0.4887 (—>——) 0.0141(h") 7.467(——) 0.0521(day") 32]
bacteria mgcod
SHF-MBR
Ammonium- mgvss mgN
HRT=9.5h, oxidizing 1-191(—d) 0.1612(h?) 0.2204( 7 ) NM
T=14.7°C, MLSS = bacteria mgco
6.6g/l.
Nitrite oxidizing | 0.6473 (L8255 0.0786(h") 0.324(M8N ) M
bacteria mgcod :
. 2 Total bacteria
Heterotrophic 0.4609 ( MEvss ) 1 16.47(—mg0 ) -
bacteria macod 0.0192(hY) I deca(yd_a(:/._(l);;ou [32]
SHF-MBR mgvss m N
i - 1.0389(——) 1 0.9329( &Y )
HRT=9.5h; Nitifing bacteria mgcod 0.272(h?) 17
MLSS=3.3g/I
. . mgvss
Nitrite-oxidizing 0.7791( g 0.1124(h") 0.4364( 25" mgN )
bacteria mgcod ) L
Serratia
liquefaciens
IMBR
and aeromonas 0.567 (M) 4 coD 4
HRT=13h, hydrophila mgcod 0.0233(h") 326.14(78E00) | 0.062(day) [33]
MLSS=5g/I (predominant
bacteria)
mgvss
5 . Heterotrophic 0.756 (——) 3.687 (€ 1
HRT=33h 25°C biomass mgcod 2h NM 0.353 (day?) [34]
HF-MBR
HRT=8h, T=27°C Heterotrophi mgvss
! ! phic 0.703 (——=—— -1
and MLSS b (mgco d) NM NM 0.02(day™) [35]
concentration
=1.3g/L.

MBR-M: membrane bioreactor with microfiltration / IMBR: Immersed MBR/ SHR-MBR: Submerged hollow fiber membrane bioreactor.

hydraulic retention times (12-24 hours). Their findings indicate that
the optimal operating conditions to achieve maximum COD removal
of 97% were a HRT of 21 hours and MLSS content of 8.2 g/L.

Operating parameters such as Hydraulic Retention Time (HRT),
Solid Retention Time (SRT), Mixed Liquor Suspended Solids (MLSS),
and Chemical Oxygen Demand to Nitrogen ratio (COD:N) play a
crucial role in the treatment process. Optimal operating parameters
are necessary to achieve both stable MBR performance and efficient
pollutant removal, and numerous studies have investigated their
impact on the treatment process.

For example, Melin T, et al. [50] found that a high concentration
of MLSS could enhance treatment performance in handling high-
strength wastewater. However, this could also lead to membrane
fouling. Jiang T, et al. [51] also reported that prolonging the SRT could

accelerate membrane fouling, as accumulated matter and high sludge
viscosity reduce treatment efficacy. On the other hand, a relatively
short HRT could result in a higher organic loading rate (OLR) and
reactor volume reduction. Conversely, a longer HRT could improve
treatment performance [44,51,52]. Furthermore, the COD:N ratio
has been investigated to assess its effects on sludge properties and its
role in membrane fouling. A laboratory-scale MBR trial revealed that
the membrane performance was significantly improved by raising the
COD:N ratio from 100:5 to 100:1.8 [53]. Thus, it is important to note
that membrane fouling increases linearly with an increase in MLSS
concentration.

Fouling in MBR Technology

The International Union of Pure and Applied Chemistry (IUPAC)
Membrane Nomenclature Working Group defines membrane
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Table 2: Summary of MBR treatment performances for industrial wastewater.

Type of industrial wastewater Results References
Paper-recycling wastewater (real) HRT: 36 h; SRT: 48; COD: 92-99% [38]
Pharmaceutical and chemical wastewater (real and synthetic) HRT: 14 days; SRT: 31-51; COD: 80% [39]
Molasses wastewater (synthetic) HRT: 18-20 h; COD: 80% [40]
Cake shop wastewater (synthetic) SRT: 50; COD: 97-98% [41]
Qil refinery wastewater (real) HRT: 12-24; COD: 74-97% [42]
Hydrolyzed polyacrylamide containing SRT: 10; COD: 98% [43]
Petrochemical industrial wastewater (synthetic) HRT: 18-24; SRT 25; COD: 99% [44]
High technology industrial wastewater (synthetic) HRT: 3.2; COD: 80% [45]
Dumpsite leachate COD: 95% [46]
Poultry slaughterhouse wastewater COD>94%,; fats 99%; SS98%; BOD 97% [47]
Textile COD57%; color100%; salinity 30% [48]
Oily wastewater Oil and grease 100%; TOC 98%; COD 98% turbidity 100% [49]

HRT: hydraulic retention time; SRT: sludge retention time; COD: chemical oxygen demand; TOC: Total organic carbon.

Table 3: Factors affecting membrane fouling [58].

- and making the cake layer easier to form.
characteristics

Factor Influence Type of wastewater
The cake layer in the organic fouling was clearly visible, whereas inorganic fouling did not lead to
Membrane membrane fouling.
structure The protein content of the extracellular polymeric substances (EPS) was higher than the )
roperties ; : s . Hot white pulp wastewater
prop polysaccharide content, causing the liquid to become more viscous
A rise in SMP, greater difficulty in filtration, and a decrease in the membrane's performance due to .
; Domestic wastewater
fouling.
. The supernatant SMP had higher protein content than polysaccharides, leading to a thicker texture .
Biomass Industrial waste

As the SRT was raised, the SMP and viscosity of the sludge both increased.

Low concentration wastewater

had risen, resulting in an increased rate of fouling.

After 30 and 50 days, the sludge flocks had grown larger, the SRT was too low and thus the SMP

Municipal wastewater

If it was too large, MLSS, SMP, and other microbial products increased-

HRT declined, protein substances in SMP increased, and EPS concentration increased

Low concentration wastewater

HRT decreased, filtration resistance increased, and granular sludge particle size decreased

Artificial wastewater

Operating

< was easy to form
condition

Small flocks increased under high-temperature conditions, SMP, and EPS increased, filter cake layer

Evaporator condensate

content in EPS increased

fouling as a decrease in the effectiveness of the membrane due to the
accumulation of particulates, microorganisms, cellular debris, colloids,
and solutes on the membrane surface, at the pore openings, or within
the membrane’s pores [54]. This buildup of Total Suspended Solids
(TSS) results in a reduction in the membrane’s performance [55-57].

Membrane fouling occurs as a result of physicochemical interactions
between the pollutants and the membrane material. This can lead to
reduced membrane efficiency and, in some cases, the inability of the
membrane to effectively treat the required design flows [58] (Figure 1).

When the temperature went up, the membrane fouling resistance increased, and the protein

Hot pulping press

Membrane bioreactors (MBRs) have shown to be an effective
solution for treating industrial wastewater. However, their widespread
commercial application and effectiveness are hindered by membrane
fouling and its consequential impacts on operational costs. Membrane
fouling is a complex process that is influenced by numerous factors,
outlined in figure 2 and table 3. Broadly speaking, these factors can be
categorized into four main groups:

1. Membrane properties

2. Biomass characteristics
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3. Operating parameters
4, Wastewater characteristics

Determining membrane fouling in MBR technology requires
considering the interaction among several parameters. In the context
of industrial wastewater, the fouling behavior’s complexity and
criticality are further exacerbated by the extreme and complicated
nature of the wastewater conditions.

Numerous researchers have examined the relationship between
various parameters related to wastewater, biomass characteristics,

- Microorganisms

Figure 1: Mechanisms of the biofilm formation: (1) Conditioning film
(protein layer), (2) Transport to the surface and immobilization, (3)
Attachment to the substrate [59].

" Kl 1

Figure 2: Representation of the fouling mechanisms: (a) complete
pore blocking, (b) partial pore blocking, (c) internal pore blocking,
and (d) cake formation [59].

membrane properties, and operating conditions. Table 3 provides
an overview of some of the studies that have investigated these
interactions in relation to membrane fouling (Figure 3) [60,61].

In Membrane Bioreactor processes, membrane fouling is a major
operational issue, caused by the interaction between the mixed liquor
and the membrane.

Three main factors lead to membrane fouling:

i Gel formation involves the development of a gel-like
substance in the membrane pores or on the membrane surface.

il. Pore plugging, which happens when substances deposit on
the surface of the membrane.

iii. Pore narrowing, which occurs when soluble and micro-
colloid substances smaller than the membrane pore size are sorbed
[62].

Membrane fouling is caused by biofilm, including Extracellular
Polymeric Substances (EPS), as well as substances that are soluble,
particulate, colloidal, or inorganic [54].

In MBR operation, when a constant Transmembrane Pressure
(TMP) is maintained, membrane fouling leads to a decrease in
permeate flux. Conversely, when constant permeate flux is maintained,
membrane fouling results in an increase in TMP. A significant rise in
TMP during continuous flux operation indicates notable membrane
fouling. This sudden increase is often referred to as TMP jumps,
denoting an abrupt spike in TMP.

Fouling of membranes in MBR process can be divided into three
stages [63,9]:

Stage 1: Conditioning Fouling

Conditioning fouling stage due to fast deposition of microbial
products residue and initial pore blockage

Stage 2: Gradual Increase in TMP

In this stage, the TMP (transmembrane pressure) shows a gradual
linear or weakly exponential increase. This is caused by the formation
of biofilm and further blockage of membrane pores.

Stage 3: Rapid Increase in TMP

At Stage 3, the rate of TMP increase (dTMP/dt) increases quickly
and drastically [64]. This is caused by the buildup of fouling on the
membrane, which is a result of pore closure, shifts in local flux, and
a buildup of particles [65-66]. The consistency of the cake layer also
changes drastically, and bacteria within the internal biofilm tend to
die due to a lack of oxygen, resulting in more extracellular polymeric
substances (EPS). When Stage 3 is reached, it is necessary to clean the
membrane.

By modifying sludge characteristics, such as MLSS, flock size, EPS
content, and apparent viscosity, or by reducing the operational flux,
the occurrence of Stage 3 can be delayed and leading to the lower
frequency of membrane cleaning and cost savings in MBR operation
[54]. Thus, one of the main goals of fouling control is to delay the
sudden increase in transmembrane pressure (TMP).

Properties of mixed liquor

Various types of contaminants can be classified according to their
biological and chemical properties. These categories are biofoulants,
organic foulants, and inorganic foulants.
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Figure 3: Parameters interacted in fouling of the membrane.
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Figure 4: Factors influencing fouling and its step on the membrane.

Organic foulants: Organic foulants, which are biopolymers such
as polysaccharides and proteins, are metabolic products of bacteria
(known as EPS) that can build up on the membrane in an MBR system
and reduce its permeability. A study by Wang XM, et al. [67] showed
that these biopolymers can be a major factor in membrane fouling
when performing experiments on laboratory-scale submerged MBR
with a hollow fiber membrane module.

Inorganic foulants: The precipitation of inorganic ions, such as
Ca*, Mg*, and Po 43‘ onto membrane surfaces and into membrane
pores, can cause a process known as membrane fouling. This effect is
due to the hydrolysis of these ions, which can lead to changes in pH
and oxidation [67].

Biofouling, the fouling of a membrane by microorganisms, occurs
due to the contact between the mixture of liquor and the membrane
surface. This contact leads to the adherence of microorganisms to
the membrane surface, resulting in the formation of a fouling layer
known as a “biofilm.” The biofilm is composed of a matrix containing
microbes and their metabolic products, such as EPS (extracellular
polymeric substances) and SMP (soluble microbial products). These
substances consist of macromolecules like polysaccharides, proteins,
and lipoproteins [68]. The characteristics of the biofilm, including its
physicochemical properties, are determined by the microbial cells and
EPS present within it [69]. The presence of EPS in the biofilm matrix
enables the maintenance of microbial life functions and provides
protection to the microbial cells from bio-acids [69].
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The development of biofouling can be divided into four steps, as
illustrated in figure 2:

1-Attachment of microbial cells to the membrane surface.
2-Secretion of microbial products onto the membrane surface.
3-Production of EPS on the membrane.

4-Growth, multiplication, and eventual detachment of microbial
cells from the membrane surface.

The growth of microorganisms/biofilms, physicochemical properties
of the membrane, and solution chemistry and hydrodynamic operating
conditions are the key factors that significantly impact fouling (Figure
4). Controlling membrane fouling is crucial for the cost-effective and
long-term operation of MBR technologies. To prevent fouling and
clogging in full-scale MBRs, several strategies are utilized, including:

1-Pre-treating the wastewater before it reaches the membranes,

2-Utilizing permeate backflush/backwashing or relaxation
techniques,

3- Cleaning the membranes with chemicals,

4-Using chemically enhanced backwash methods,
5-Scouring the membrane with coarse bubble aeration,
6-Modifying the mixed liquor with chemical treatments.

In MBR systems, the process of reversing the filtration flow is
called backflushing. Its main purpose is to remove particles that are
attached to the surface of the membrane. During the relaxation time,
the filtration process stops to alleviate the pressure on the membrane.
Backflushing and relaxation are two periods that occur in the normal
operation of MBR systems, so three cycles alternate: filtration,
backflushing, and relaxation.

Backwashing/relaxation is a popular technique for eliminating
reversible blockages and is especially successful in eliminating cake
layers. Submerged MBR systems use coarse bubble aeration in the
bottom part of the membrane units to achieve membrane scouring.
Chemical cleaning with mineral organic acids, caustic soda, or sodium
hypochlorite can be conducted on-site or off-site. Sodium hypochlorite
is commonly used to remove biofouling, while citric acid is used to
eliminate inorganic fouling. Chemical cleaning is an efficient solution
for fouling that cannot be removed during normal MBR procedure,

however, regular and intensive chemical cleaning can reduce the life
span of the membrane [69-71].

The addition of certain chemicals, such as coagulants,
polyelectrolytes, adsorbing agents, and performance enhancers,
can modify the characteristics of the mixed liquor to improve the
filtration process and reduce membrane fouling. Coagulants are used
to introduce positive charges, which neutralize the negative charges
of biomass and aid in flocculation. Adsorbents, such as zeolite and
activated carbon, have been added to the mixed liquor in MBR systems
to reduce fouling by adsorbing colloidal and soluble substances [72].
Adding natural zeolite has been proven to decrease the concentration
of soluble microbial products and mitigate fouling [73,74]. While, the
addition of a sponge or powdered activated carbon, has been found to
reduce cake formation and pore blockage on the membrane’s surface
[75,76]. Cationic polymers such as MPE50 and poly-aluminum
chloride have also been shown to be effective in decreasing membrane
fouling [77] (Figure 5).

Biofoulants: Biofoulants are microorganisms or flocks that
attach to and accumulate on a membrane surface, which can reduce
permeability. This deposition and the metabolic by-products of the
microorganisms can cause fouling [78].

Membrane fouling control

Membrane fouling can be caused by combination of foulants
particulate, colloidal; mineral scale, nature organic and microbial
biofilm, and there are several techniques that can be used to reduce
this fouling. The effectiveness of these techniques is dependent on the
feed solution and membrane characteristics, and can include boundary
layer velocity control, turbulence inducers, membrane material
modification, the use of external fields [79], feed pretreatment, flow
selection, rotating membranes, and gas sparging [80].

The primary objective of membrane cleaning is to recover the
permeation flux, by removing any deposited material from the
membrane surface to allow for the movement of permeate. Various
approaches can be used to clean a membrane, such as physical,
chemical, biological/biochemical, and physico-chemical methods.
Cleaning may be carried out either inside the reactor, or with the
membrane taken out for separate cleaning. The following cleaning
techniques can be employed: ultrasonic cleaning, sponge ball cleaning,
chemical cleaning, biological/biochemical cleaning, and physico-
chemical cleaning [81,82].

Operating parameters
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Figure 5: Parameters controlling the fouling of the membrane.
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. Ultrasonic cleaning: This method utilizes ultrasound to
generate agitation and turbulence on the membrane surface, effectively
dislodging foulants and removing them from the membrane [83].

o Sponge ball cleaning is a mechanical method used for
membrane cleaning that involves using sponge balls to scrub the surface
of the membrane. This technique helps to remove contaminants and
other unwanted materials, resulting in a cleaner membrane surface
[84,85].

. Chemical cleaning: This method is employed in situations of
irreversible fouling. It is crucial to understand the interactions between
membrane characteristics and foulants, as well as between foulants
and the chemical products used for cleaning, and the compatibility of
chemical products with membrane characteristics [86].

o Biological/biochemical cleaning: This cleaning approach
utilizes bioactive agents, such as enzymes, to remove foulants from
the membrane. Biological and biochemical cleaning methods have
a low environmental impact and are commonly used in Membrane
Bioreactors (MBRs) [87,88].

. Physicochemical cleaning methods: These methods
combine physical and chemical cleaning techniques to enhance the
effectiveness of the cleaning process. For example, using ultrasound
in conjunction with chemical cleaning can significantly improve flux
recovery by up to 95% [89,90].

Membrane-fouling strategies

To reduce and avoid membrane fouling caused by highly
concentrated industrial wastewater, a variety of strategies are employed
in Membrane Bioreactor (MBR) systems. These involve pretreatment,
modifying operational parameters, altering the mixed liquid, and
employing advanced membrane modules.

The Pre-treatment is an essential step in controlling fouling as it can
lessen the damaging effects of toxic substances or highly concentrated
pollutants.

Pretreatment strategies: The success of Membrane Bioreactor
(MBR) technology is heavily dependent on effective influent
pretreatment [90]. By improving membrane performance,
pretreatment can increase the permeate flux and reduce fouling
rates. Various techniques are available for pretreatment, including
physicochemical methods such as coagulation and adsorption [91].
For example, In 2016, Xue J, et al. [92] discussed the use of ozone
pre-treatment for fouling control in an MBR system handling oil
sands process affected water. Several strategies are used in Membrane
Bioreactor (MBR) systems to control and prevent membrane fouling
caused by extreme industrial wastewater. These strategies include
pretreatment, operational optimization, mixed liquor adaptation, and
the use of novel membrane modules. Pretreatment is an important step
because it can reduce the impact of toxic or high-strength pollutants
on fouling. Xue J, et al. [92], for example, reported the use of ozone
pretreatment for fouling control in an MBR system that manages oil
sands process affected water [92]. Also Yu W, et al. [93] conducted
an investigation to assess the impact of combining alum and a low
amount of NACLP (1mg/l) before UF membrane separation, which
significantly reduced membrane fouling rates by nearly 60%. Sardari
K, et al. [94] in 2018 applied electrocoagulation as a pretreatment
to direct contact membrane distillation (DCMC) and achieved a
57% water recovery rate. Likewise, Unal BO, et al. [95] combined
electrocoagulation and electrooxidation procedures in a bioreactor
with an electrical membrane, with the aim of improving the efficiency of

membrane filtration and successfully managing membrane fouling. In
addition, Chang H, et al. [96] and Kong FX, et al. [97] applied chemical
coagulation for treating shale gas flowback water and produced water
prior to ultrafiltration. These studies achieved decreased membrane
fouling and sustained constant flux [97].

As a pretreatment method, prefiltration can involve the use of pack
bed filters, strainers, filter cloths, or low-pressure membrane processes.
For example, Zavala MAL, et al. [98] in 2014 implemented felt and
compressed polyester to treat gray water from washing machines
discharges prior to its use.

Some researchers, like Amadou-Yacouba Z, et al. [99], used the
preozonation as a pretreatment. Examining the effect of pre-ozonation
on fouling during nanofiltration, it was found that when ozonated
wastewater from an MBR was used, there was a 62% decrease in flux
at 80% of permeate recovery and improved flux recovery after simple
water cleaning. Thus, pre-ozonation of the effluent has two advantages:
it reduces the need for chemical cleaning and extends the membrane
lifetime by postponing chemical cleaning.

In the same vein, Pramanik BK, et al. [100] studied the importance
of coagulation as a pretreatment, MIEX (magnetic ion exchange
resin), and BAC (biological activated carbon) before the MBR system
for controlling the organic fouling of a microfiltration membrane,
the results demonstrate that pretreatment with MIEX (Magnetic Ion
Exchange) was more effective than pre-coagulation in reducing the
fouling of a microfiltration membrane caused by secondary effluent.
This is likely due to a greater removal of humic substances achieved
with MIEX. All these pretreatment methods are efficient in removal
of suspended solids and organic contaminants that cause membrane
fouling abilities.

Optimizing of operational parameters: Considering the
operating parameters of the MBRs that affect the membrane foulants,
significant research work on the MBR process to reduce membrane
fouling has been carried out, including contradictory conclusions
or shortcomings. Previous research conducted by Banti DC, et al.
[101] explained that the significance of filamentous bacteria in the
control of membrane fouling was emphasized. Nonetheless, the lower
adsorption rate of soluble components by filamentous bacteria results
in their diminished population in wastewater treatment processes.
This reduction occurs due to the comparatively faster adsorption
rate exhibited by other bacteria involved in floc formation. The step-
aeration process is designed to alter biological treatment parameters
deliberately, aiming to decrease the adsorption rate of floc-forming
bacteria. This intentional adjustment fosters a favorable environment
for the growth and development of filamentous bacteria.

Also authors highlights the effectiveness of the intermittent or cyclic
aeration as a highly efficient method for controlling this technique
is commonly employed for treating both municipal and industrial
wastewater [102].

Minimizing membrane fouling in membrane bioreactors (MBRs)
is achievable through the optimization of operational settings
parameters, an illustrative example of this approach is the identification
of cyclic aeration as an efficient and energy-conscious method for
controlling fouling in full-scale municipal and industrial MBRs
[103]. Furthermore, controlling fouling in MBRs requires a thorough
understanding of the unique fouling behavior and composition,
particular in relation to the specific characteristics of the wastewater.

Modification of mixed liquor: Saline wastewater is difficult to
change through pretreatment, changing the mixed liquor is a direct
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way to reduce the risk of membrane fouling. This modification is
achieved by adding biomass media, coagulants adsorbing agents, or
other chemicals. For example, Song W, et al. [104] studied two types
of carriers in MBR to rebuild the polymeric structure of disintegrated
sludge (due to salinity), leading to improved treatment performance in
mariculture wastewater and a decrease in membrane fouling.

Membrane Module: Deowan SA, et al. [105] developed a new
antifouling coating for MBR membranes using a Polymerizable
Bicontinuous Microemulsion (PBM) technique, resulting in a better
performance in terms of fouling. Additionally, Zhao C, et al. [106]
formulated a new membrane composition by blending Polyvinylidene
Fluoride (PVDF) and hydrophilic Graphene Oxide (GO) nanosheets.
This new membrane showed superior results when tested in an MBR
system, as it demonstrated a higher critical flux, lower cleaning
frequency, and lower membrane resistance compared to a conventional
membrane.

Energy Consumption in Membrane Bioreactor

Technology

One of the drawbacks of membrane bioreactors is the amount of
energy they consume. When fouling occurs, the resistance to water
flow through the membrane increases. This increased resistance
requires higher transmembrane pressure to maintain the desired flow
rate, and additional energy is often needed to overcome this resistance.
In particular, more energy may be required for air scouring, which is
a common method used to clean or prevent fouling on the membrane
surface.

Studies have found that, in MBR operations, the average specific
energy requirement is typically between 0.6-2.3 kWh/m® of treated
effluent. Moreover, Novotny V, et al. and Brepols C, et al. [107,108]
investigated that in optimal operating and in large MBR plant, the
specific energy requirement can be reduced to as low as 0.4 kWh/m’.

It is essential to reduce the energy consumption of MBRs in order to
promote their widespread use. Aeration control based on the real-time
analysis of various process parameters can lead to a decrease in the
amount of energy needed [109]. Studies have demonstrated positive
outcomes, including a 20% decrease in aeration and a 4% reduction
in energy consumption, through the use of an ammonia-N-based
aeration control strategy in full-scale MBRs [110].

Artificial Intelligence to Control Membrane Fouling

Several research projects have tried to improve operating parameters
to decrease membrane soiling by utilizing Artificial Intelligence (AI)
and Machine Learning (ML), two effective methods that have achieved
excellent results in dealing with such ecological engineering issues
[111].

Optimization algorithms are other intelligent techniques that are
highly advantageous for better and more efficient membrane fouling
control. More research is needed to measure the effectiveness of the
above-mentioned intelligent approaches in the case of membrane
fouling.

Al-based solutions are increasingly used in the prediction of
membrane fouling in diverse membrane filtering systems with
complicated and unpredictable systems. Due to their autonomous
learning and self-diagnosis capabilities, numerous Al algorithms have
been used to predict membrane fouling [112]. However, a critical
evaluation of the use of various Al-based algorithms in predicting
membrane fouling for various membrane filtering systems is
lacking [113].

Conclusion

All industries must deal with wastewater, especially in developing
nations, where significant quantities of wastewater are often discharged
directly into natural ecosystems without prior treatment. In contrast,
most developed countries utilize various treatment methods to
eliminate pollutants from the generated wastewater before release.
There is an endless list of applications for membrane bioreactor
technology for the treatment of various industrial wastewaters,
and water pollution has become a serious environmental concern,
especially in due to the current water shortage.

This paper offers comprehensive overview of membrane fouling
and advances in fouling reduction strategies in MBRs. It covers basic
information on membrane fouling and the classes of membrane
fouling in MBRs, as well as factors that affect membrane fouling. It also
reviews current research trends in the control of membrane fouling in
MBRs and highlights successful applications of MBR in treating high-
strength industrial effluent. Finally, it addresses the major problem
with this innovative technology and how to address it.

The parameters that influence membrane fouling’s, such as
membrane properties, biomass characteristics, operating parameters,
were revealed. The primordial role of membrane fouling strategies in
order to prevent fouling and the energy consumption needed while
using MBR were also defined and discussed.

Furthermore, the paper examined the utilization of modeling
and optimization methods in conjunction with other AI and ML
approaches, including cluster analysis, image identification, and feature
selection, to effectively supervise and regulate membrane fouling.
Hopefully, this review will be useful in providing more information
about membrane fouling and membrane technology in general.
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