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This type of treatment employs a variety of techniques, ranging from 
conventional activated sludge methods to cutting-edge technologies 
like membrane bioreactor systems (MBRs). Biological wastewater 
treatment technologies have gained popularity worldwide because 
they are both effective and cost-efficient compared to many chemical 
and physical treatment processes.

Membrane bioreactor systems (MBRs) are a compact technology 
that combines the activated sludge process with membrane filtration 
in order to treat and recycle wastewater. The membrane bioreactor has 
been widely utilized for different wastewater treatment (municipal and 
industrial) and reclamation [2]. This technology integrates a suspended 
growth bioreactor with a permeable membrane mechanism, such as 
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), or 
reverse osmosis (RO). MBRs are recognized as a well-established and 
mature technology for wastewater treatment globally, demonstrating 
significant pollutant removal efficiency. The MBR market reached a 
value of US$3.3 billion in 2021, and it is projected to reach US$5.8 
billion by 2027 according to IMARC Group projections. MBRs are 
considered a groundbreaking innovation in wastewater treatment, 
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Abstract
Due to its success in achieving the majority of wastewater treatment objectives, Membrane Bioreactor Technology (MBR) has replaced the 

Conventional Activated Sludge Process (CAS) as the leading method for treating wastewater. Nowadays, the treatment of industrial wastewater 
become one of the world’s major concerns, MBR technologies are used more frequently. This technology has a bright future in wastewater treatment 
(especially industrial wastewater). In general, this article is designed to give a general view of various aspects of an MBR, with the aim of addressing 
and overcoming any potential drawbacks or limitations. In this work, the fouling in MBR technology its variations and mechanisms, influencing 
factors are also discussed in detail. However, membrane fouling is thought to be the biggest challenge this technology faces. One of the main 
agents that causes the fouling of the membrane is Extracellular Polymeric Substances (EPS), which results in a decrease in filterability and a decline 
in membrane flux, which affects the membrane lifespan. Furthermore, it looks into how to minimize membrane fouling in MBR systems and offers 
biological tactics to lessen the likelihood of membrane fouling in MBR technology. Finally, this work quoted also how artificial technology might help 
to increase removal effectiveness and prevent filtering membrane obstruction.

Keywords: MBR technology; Membrane fouling; Control; Mechanisms; Operating parameters

Abbreviations: MLSS: Mixed Liquor Suspended Solids; EPS: Extracellular Polymeric Substances; SMP: Soluble Microbial Products; HRT: Hydraulic 
Retention Time; TMP: Transmembrane Pressure; SRT: Sludge Retention Time; Mbrs: Membrane Bioreactor System; MIEX: Magnetic Ion Exchange 
Resin; BAC: Biological Activated Carbon; EO: Electroxidation

Introduction
In recent decades, several factors like population growth, 

urbanization, industrialization, climate change, and the expansion 
of irrigated agriculture have contributed to a change in the global 
demand for freshwater. This has resulted in water scarcity becoming 
a significant challenge for almost all countries worldwide [1]. To 
address this issue, there is currently a high demand for recycling 
water through the use of advanced treatment technologies, such as 
industrial and municipal wastewater treatment, in order to alleviate 
water shortages. The World Economic Forum’s 2019 report recognized 
freshwater scarcity as one of the biggest global risks with potential 
large-scale impacts in the next decade. In light of this, industries 
worldwide need to place a greater emphasis on adopting sustainable 
water treatment practices, wastewater recycling, and wastewater 
reuse for various purposes. These efforts can help reduce the strain 
on freshwater supplies and promote a more sustainable approach to 
water management.

The process of biological wastewater treatment utilizes 
microorganisms such as bacteria to eliminate pollutants from water. 
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addressing the limitations of conventional activated sludge processes, 
such as the need for large secondary clarifiers, challenges with liquid-
solid separation, excess sludge production, and difficulties in removing 
recalcitrant compounds [3].

In an MBR, membrane filtration is combined with a traditional 
biological treatment system to effectively separate liquids from solids 
[4]. MBRs can handle higher organic loads compared to conventional 
treatment methods (ASP), making them suitable for treating wastewater 
with specific components that may be hazardous to microbial activity 
[5]. The long-lasting microbial populations in MBRs contribute to 
their resilience against environmental changes post-treatment. In 
addition, MBRs result in improved quality of the treated effluent. The 
biological component of MBRs, especially in the context of industrial 
wastewater, plays a crucial role in their effectiveness and efficiency 
[6]. The microorganisms in MBRs biodegrade organic components 
in the raw water prior to membrane filtration. Ghimire N, et al., 
Razavi SMR, et al., Le-Clech P, et al. [7-9] reported that temperature, 
pH, wastewater composition, F/M ratio (food to microorganisms), 
airflow rate, MLSS concentration (mixed liquor suspended solids), 
SRT (sludge retention time) and HRT (hydraulic retention time) are 
all parameters that influence microbial activity and the treatment 
of wastewater in the bioreactor. MBRs are resilient systems that can 
process wastewater from a variety of industrial sources. Studies by Liu 
J, et al. [10] and Mubbshir S, et al. [11] demonstrated that a two-stage 
Anoxic/Oxic-MBR system was effective in removing pollutants from 
landfill leachate, achieving average removal efficiencies of 85.6% for 
COD and 80.7% for TN [10,11]. Furthermore, Ariaga S, et al.[12], the 
MBR polishing step primarily removes particulate matter, it reduces 
the cost of pathogenic bacteria removal and inactivation [12]. Sun J, 
al. [13] conducted research on the effectiveness of designed anoxic/
aerobic MBR system for hypersaline municipal sewage treatment, in 
a processing zone (China). The sewage comprised roughly of 80% 
industrial wastewater and 20% sewage, containing approximately, 
1000mg/l [13]. In a separate study, Roy D, et al. [14] proposed the use 
of a lab-scale submerged membrane bioreactor for treating synthetic 
leachate for 205 days with four ammoniacal nitrogen concentrations 
(220, 340, 665, and 1040 mg/L). Their findings concluded that the 
model was effective in treating high-strength ammoniacal nitrogen 
[14].

The MBR process has a number of benefits when compared to 
the ASP, the MBR treatment can achieve high removal efficiencies in 
domestic wastewater treatment and that MBR permeate is suitable for 
urban, agricultural, and recreational reuse based on the quality criteria 
for water reuse [15].

In MBR systems, the membranes replace the need for secondary 
clarifiers. This leads to a significant reduction in required plant area, as 
MBRs operate at shorter HRTs and eliminate the need for secondary 
clarifiers. However, it is worth noting that the MBR method has a few 
drawbacks, such as the challenge of controlling membrane fouling and 
increased energy costs [15].

MBR technology has become increasingly popular due to its 
ability to produce high-quality water, cost-effectiveness, widespread 
acceptance, and the potential to upgrade existing wastewater treatment 
plants [16-18].

It is worth noting that academic studies have been conducted to 
address the two main drawbacks of MBR technology mentioned 
earlier: membrane fouling and energy consumption. Membrane 
fouling remains a significant issue in MBR technology [19,20]. It 

leads to a decline in membrane performance and lifespan, resulting in 
increased maintenance and operating costs [21].

The accumulation of suspended particulates such as 
microorganisms, cell debris, colloids, solutes, and sludge flocks are 
responsible for membrane fouling. These substances are deposited on 
the surface and within the pores of the membrane, leading to pore 
clogging and decreased membrane permeability [22].

Membrane fouling in wastewater treatment systems occurs when 
solid particles are deposited on the surface of the membrane and 
colloidal particles build up within its pores [23]. This buildup impairs 
the hydraulic performance of the membrane, causing a decline in 
permeability and an abrupt increase in transmembrane pressure, 
which leads to higher maintenance and operating costs due to 
increased energy consumption and frequent membrane cleaning 
operations [24,25]. Recent studies have shown that the specific amount 
of EPS directly correlates with the specific cake resistance, which 
further exacerbates membrane fouling [26]. To combat this issue, 
new approaches are needed to reduce membrane fouling, and further 
research is required to gain a better understanding of the composition 
and behavior of fouling biopolymers in MBR fouling.

Membrane fouling is a critical issue that limits its application in 
wastewater engineering. The composition of suspended solids in the 
mixed liquor suspended solids (MLSS) is the leading cause of membrane 
fouling [27]. This has prompted recent research into membrane 
fouling mitigation and expanding the use of MBR technology. This 
review aims to investigate the reactions and kinetics of biological 
treatment, assess recent progress in understanding the mechanisms 
and roles involved in fouling, and propose potential solutions for 
controlling fouling in MBR systems. The review extensively cites the 
work of many researchers to gain a comprehensive understanding of 
the major problem in MBR technologies, which is membrane fouling.

Drawing upon recent and relevant literature on membrane fouling, 
this article provides an overview of the fundamental principles of 
membrane fouling and the advancements in approaches to reduce 
fouling in MBRs. It covers essential information on membrane 
fouling, including classifications specific to MBRs, and explores the 
various variables that influence membrane fouling in these systems. 
Furthermore, the review offers an in-depth analysis of the current 
research trends in managing membrane fouling in MBRs, shedding 
light on the latest developments in this field.

Biological Treatment
Type of microorganisms

The majority of microorganisms found in a biological reactor are 
bacteria, making up more than 90% of the total population. Other 
organisms present include protozoa, metazoa, filamentous bacteria, 
algae, and fungi [28]. These bacteria can form pairs, chains, or clusters, 
while some may exist as single cells. They have diverse metabolic 
capabilities, utilizing various energy sources such as electron donors, 
electron acceptors, and carbon sources. These organisms are capable 
of breaking down various organic and inorganic contaminants, as well 
as creating the ideal environment for treating specific components 
present in wastewater. A research project by Shchegolkova NM, et 
al. [29] used 16S rRNA gene sequencing to analyze the composition 
of bacteria present in activated sludge and wastewater from three 
different treatment plants. The research also included a heat map 
highlighting the top 40 families of bacteria in activated sludge, which 
accounted for 94.2-97.5% of all bacteria [29].
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Bacteria and other microorganisms gather on the membrane’s 
surface, leading to the development of biofilms. As opposed to 
solitary, free-floating cells, biofilm cells are embedded in a self-made 
extracellular polymeric substance (EPS) matrix. The EPS contains 
proteins and carbohydrates, which contribute to the adhesive 
properties of the biofilm. However, this adhesive nature of biofilms 
poses a significant challenge in Membrane Bioreactor (MBR) plants 
[30].

Microbial stoichiometry and kinetics in a bioreactor
In the evaluation of biological treatment performance, balanced 

microbial stoichiometric equations play a vital role. These equations 
bear a resemblance to chemical stoichiometric equations but hold 
immense importance in the biological treatment process. It is 
important to note that the substrate in the microbial kinetics equation 
serves a dual purpose, providing energy and aiding the synthesis of 
biomass. Microorganisms not only act as catalysts for biological 
reactions but also undergo reproduction, leading to their growth and 
proliferation throughout the treatment process.

The amount of biomass produced compared to the amount of 
substrate (such as glucose) consumed can be expressed as biomass 
yield or growth and is determined by various factors such as microbial 
composition and growth conditions [30,31].

To understand and analyze the reaction in biological processes, it 
can be difficult to accurately estimate the speed of the reaction, due to 
the need to include a wide range of elements in the equation (Table 1). 
It is important to consider the source and destination of electrons, the 
necessary nutrients, the amount of biomass present, and the oxidized 
products when constructing a balanced microbial stoichiometric 
equation.

Determining the microbial reaction rate is of great importance 
for various purposes, such as estimating the required volume of 
the bioreactor and the concentration of biomass needed to achieve 
a specific outcome. Additionally, the reaction rate can be used to 
estimate the performance of the bioreactor under specific operating 
conditions and assist in the design process. To facilitate this, specific 
software tools like BioWin, STOAT, GPS-X, and WEST have been 
developed [35].

These software tools use microbial kinetics and establish mass 
balance equations to reveal important bioreactor performance 
indicators, such as biomass production rate and substrate 
concentration in the effluent. Microbial kinetics primarily focuses on 
optimizing microbial growth rate and substrate utilization [34]. The 
breakdown of biodegradable substrates through metabolism leads to 
microbial growth. However, it is essential to note that not all materials 
in the incoming wastewater are biodegradable. Therefore, determining 
the amount of biodegradable material in the incoming wastewater is 
essential for accurately calculating the microbial growth rate.

Furthermore, as microorganisms grow, they also undergo 
decomposition. The difference between the growth rate and the 
decomposition rate is referred to as the net growth rate. This net 
growth rate can be defined as follows:

.g net growth decayr r r= +

.
m

g net d
dxr k X
dt Ks

S X
S

µ
= = −

+

Where: 

rg.net is the net growth rate (gVSSm
3/day); 

X is the biomass concentration (gVSS/m
3);

VSS is the Volatile suspended solids;
S is the biodegradable substrate concentration (gCOD/ m3);
μm shows the maximum specific growth rate (day-1);
KS and kd represent half saturation constant for biodegradable 

substrate (gCOD/m3)r(g.net) is the net growth rate 
3

( )m
day

 [32].

This coefficient is critical for understanding how microorganisms 
utilize their food source, also known as substrate. The rate of substrate 
uptake is strongly related to the rate of microorganism growth and the 
biomass yield coefficient.

Although the growth rate of microorganisms is important, 
engineers are primarily concerned with the substrate removal rate 
because it indicates the progress of the treatment [35].

In addition, the rate of volatile Suspended solids (VSS) production 
in the bioreactor is a critical parameter for designing and operating 
bioreactor facilities. The mixed liquor VSS in the bioreactor are 
produced from three main sources:

Microorganisms’ growth

Non-biodegradable VSSs resulting from biomass decomposition 
cannot be utilized by microorganisms as substrates.

Non-biodegradable VSSs are generated by the influent, which 
depends on the characteristics of the wastewater.

The total VSS production rate (RVSS,t) can be expressed using the 
following formula:

,
m o

vss t d d d
SX X QR K X f k X

Ks S V
µ

= − + +
+

Where:

fd is the fraction of the product of biomass decay that accumulates 
in a bioreactor;

X0 is concentration of non-biodegradable;

VSS in waste water influent 3( )vssg
m

; 

Q and V represent the influent flow rate 
3

( )m
day

and bioreactor 
volume m3 separately

MBR Application in Industrial Wastewater
This wastewater can originate from a range of industries including 

agriculture, food processing, pharmaceuticals, dye manufacturing, 
metalworking, tanneries, petrochemicals, and textile production, as 
mentioned in references [36,37]. Despite the varying sources, high-
strength industrial wastewater generally contain similar substances 
such as organic matter, nutrients, viruses, bacteria, microalgae, and 
toxic compounds [36] (Table 2).

Phuong NTT, et al. [41], reported that the most effective Organic 
Loading Rate (OLR) for treating oily wastewater in a Membrane 
Bioreactor (MBR) was 11 kg COD/m3/day. This resulted in 97.93% 
removal efficiency for Chemical Oxygen Demand (COD), 71.04% for 
Total Nitrogen (TN), and 79.04% for Total Phosphorus (TP). 

Additionally, Ahmadi M, et al. [42] assessed the effectiveness of a 
lab-scale MBR in treating oily wastewater from an oil refinery, with 
different mixed liquor-suspended (MLSS) solids (6.5 and 8.5 g/L) and 
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Table 1: Different kinetic coefficients of many bacteria existing in MBRs.

MBR 
characteristics Biomass type Yield coefficient

Maximum 
specific growth 

rate

Half–saturation 
coefficient

Decay 
coefficient References

SHF-MBR

HRT=9.5h, 
T=14.7°C, MLSS = 

6.6g/l.

Heterotrophic 
bacteria

0.4887 ( )mgvss
mgcod 0.0141(h-1) 7.467( 2mgo

L
) 0.0521(day-1) [32]

Ammonium-
oxidizing 
bacteria 

1.191 ( )mgvss
mgcod 0.1612(h-1) 0.2204 ( )mgN

L NM

Nitrite oxidizing 
bacteria

0.6473 ( )mgvss
mgcod 0.0786(h-1) 0.324( mgN

L
) NM

SHF-MBR

 HRT=9.5h; 
MLSS=3.3g/l

Heterotrophic 
bacteria

0.4609 ( )mgvss
mgcod 0.0192(h-1) 16.47(

2mgo
L

)
Total bacteria 

decay=0.03034 
(day-1)

[32]

Nitifing bacteria 1.0389 ( )mgvss
mgcod 0.272(h-1) 0.9329( mgN

L
)

Nitrite-oxidizing 
bacteria

0.7791 ( )mgvss
mgcod 0.1124(h-1) 0.4364( mgN

L
)

IMBR

HRT=13h, 
MLSS=5g/l

Serratia 
liquefaciens 

and aeromonas 
hydrophila 

(predominant 
bacteria)

0.567 ( )mgvss
mgcod 0.0233(h-1) 326.14 ( )mgCOD

L
0.062 (day-1) [33]

HRT=33h 25°C Heterotrophic 
biomass

0.756 ( )mgvss
mgcod 3.687 (

.
mg
g h

) NM 0.353 (day-1) [34]

HF-MBR

HRT=8h, T=27°C, 
and MLSS 

concentration 
=1.3g/L.

Heterotrophic 
biomass

0.703 ( )mgvss
mgcod NM NM 0.02(day-1) [35]

MBR-M: membrane bioreactor with microfiltration / IMBR: Immersed MBR/ SHR-MBR: Submerged hollow fiber membrane bioreactor.

hydraulic retention times (12-24 hours). Their findings indicate that 
the optimal operating conditions to achieve maximum COD removal 
of 97% were a HRT of 21 hours and MLSS content of 8.2 g/L.

Operating parameters such as Hydraulic Retention Time (HRT), 
Solid Retention Time (SRT), Mixed Liquor Suspended Solids (MLSS), 
and Chemical Oxygen Demand to Nitrogen ratio (COD:N) play a 
crucial role in the treatment process. Optimal operating parameters 
are necessary to achieve both stable MBR performance and efficient 
pollutant removal, and numerous studies have investigated their 
impact on the treatment process.

For example, Melin T, et al. [50] found that a high concentration 
of MLSS could enhance treatment performance in handling high-
strength wastewater. However, this could also lead to membrane 
fouling. Jiang T, et al. [51] also reported that prolonging the SRT could 

accelerate membrane fouling, as accumulated matter and high sludge 
viscosity reduce treatment efficacy. On the other hand, a relatively 
short HRT could result in a higher organic loading rate (OLR) and 
reactor volume reduction. Conversely, a longer HRT could improve 
treatment performance [44,51,52]. Furthermore, the COD:N ratio 
has been investigated to assess its effects on sludge properties and its 
role in membrane fouling. A laboratory-scale MBR trial revealed that 
the membrane performance was significantly improved by raising the 
COD:N ratio from 100:5 to 100:1.8 [53]. Thus, it is important to note 
that membrane fouling increases linearly with an increase in MLSS 
concentration.

Fouling in MBR Technology
The International Union of Pure and Applied Chemistry (IUPAC) 

Membrane Nomenclature Working Group defines membrane 



 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Lazrak A, Hannoun G, Elabbas S, Oumani A, Mandi L, et al. (2023) Advancements and Challenges in Membrane Bioreactor 
Technology for Industrial Wastewater Treatment. Int J Water Wastewater Treat 9(2): dx.doi.org/10.16966/2381-5299.192 5

International Journal of Water and Wastewater Treatment
Open Access Journal

Type of industrial wastewater Results References

Paper-recycling wastewater (real) HRT: 36 h; SRT: 48; COD: 92-99% [38]

Pharmaceutical and chemical wastewater (real and synthetic) HRT: 14 days; SRT: 31-51; COD: 80% [39]

Molasses wastewater (synthetic) HRT: 18-20 h; COD: 80% [40]

Cake shop wastewater (synthetic) SRT: 50; COD: 97-98% [41]

Oil refinery wastewater (real) HRT: 12-24; COD: 74-97% [42]

Hydrolyzed polyacrylamide containing SRT: 10; COD: 98% [43]

Petrochemical industrial wastewater (synthetic) HRT: 18-24; SRT 25; COD: 99% [44]

High technology industrial wastewater (synthetic) HRT: 3.2; COD: 80% [45]

Dumpsite leachate COD: 95% [46]

Poultry slaughterhouse wastewater COD>94%; fats 99%; SS98%; BOD 97% [47]

Textile COD57%; color100%; salinity 30% [48]

Oily wastewater Oil and grease 100%; TOC 98%; COD 98% turbidity 100% [49]

Table 2:  Summary of MBR treatment performances for industrial wastewater.

HRT: hydraulic retention time; SRT: sludge retention time; COD: chemical oxygen demand; TOC: Total organic carbon.

Factor Influence Type of wastewater

Membrane 
structure 
properties

The cake layer in the organic fouling was clearly visible, whereas inorganic fouling did not lead to 
membrane fouling. -

The protein content of the extracellular polymeric substances (EPS) was higher than the 
polysaccharide content, causing the liquid to become more viscous Hot white pulp wastewater

Biomass
characteristics

A rise in SMP, greater difficulty in filtration, and a decrease in the membrane's performance due to 
fouling. Domestic wastewater

The supernatant SMP had higher protein content than polysaccharides, leading to a thicker texture 
and making the cake layer easier to form. Industrial waste

As the SRT was raised, the SMP and viscosity of the sludge both increased. Low concentration wastewater

Operating 
condition

After 30 and 50 days, the sludge flocks had grown larger, the SRT was too low and thus the SMP 
had risen, resulting in an increased rate of fouling. Municipal wastewater

If it was too large, MLSS, SMP, and other microbial products increased-

HRT declined, protein substances in SMP increased, and EPS concentration increased Low concentration wastewater

HRT decreased, filtration resistance increased, and granular sludge particle size decreased Artificial wastewater

Small flocks increased under high-temperature conditions, SMP, and EPS increased, filter cake layer 
was easy to form Evaporator condensate

When the temperature went up, the membrane fouling resistance increased, and the protein 
content in EPS increased Hot pulping press

Table 3: Factors affecting membrane fouling [58].

fouling as a decrease in the effectiveness of the membrane due to the 
accumulation of particulates, microorganisms, cellular debris, colloids, 
and solutes on the membrane surface, at the pore openings, or within 
the membrane’s pores [54]. This buildup of Total Suspended Solids 
(TSS) results in a reduction in the membrane’s performance [55-57].

Membrane fouling occurs as a result of physicochemical interactions 
between the pollutants and the membrane material. This can lead to 
reduced membrane efficiency and, in some cases, the inability of the 
membrane to effectively treat the required design flows [58] (Figure 1).

Membrane bioreactors (MBRs) have shown to be an effective 
solution for treating industrial wastewater. However, their widespread 
commercial application and effectiveness are hindered by membrane 
fouling and its consequential impacts on operational costs. Membrane 
fouling is a complex process that is influenced by numerous factors, 
outlined in figure 2 and table 3. Broadly speaking, these factors can be 
categorized into four main groups: 

1. Membrane properties

2. Biomass characteristics
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Figure 1: Mechanisms of the biofilm formation: (1) Conditioning film 
(protein layer), (2) Transport to the surface and immobilization, (3) 
Attachment to the substrate [59].

Figure 2: Representation of the fouling mechanisms: (a) complete 
pore blocking, (b) partial pore blocking, (c) internal pore blocking, 
and (d) cake formation [59].

3. Operating parameters

4. Wastewater characteristics

Determining membrane fouling in MBR technology requires 
considering the interaction among several parameters. In the context 
of industrial wastewater, the fouling behavior’s complexity and 
criticality are further exacerbated by the extreme and complicated 
nature of the wastewater conditions.

Numerous researchers have examined the relationship between 
various parameters related to wastewater, biomass characteristics, 

membrane properties, and operating conditions. Table 3 provides 
an overview of some of the studies that have investigated these 
interactions in relation to membrane fouling (Figure 3) [60,61].

In Membrane Bioreactor processes, membrane fouling is a major 
operational issue, caused by the interaction between the mixed liquor 
and the membrane. 

Three main factors lead to membrane fouling:

i. Gel formation involves the development of a gel-like 
substance in the membrane pores or on the membrane surface.

ii. Pore plugging, which happens when substances deposit on 
the surface of the membrane. 

iii. Pore narrowing, which occurs when soluble and micro-
colloid substances smaller than the membrane pore size are sorbed 
[62].

Membrane fouling is caused by biofilm, including Extracellular 
Polymeric Substances (EPS), as well as substances that are soluble, 
particulate, colloidal, or inorganic [54].

In MBR operation, when a constant Transmembrane Pressure 
(TMP) is maintained, membrane fouling leads to a decrease in 
permeate flux. Conversely, when constant permeate flux is maintained, 
membrane fouling results in an increase in TMP. A significant rise in 
TMP during continuous flux operation indicates notable membrane 
fouling. This sudden increase is often referred to as TMP jumps, 
denoting an abrupt spike in TMP.

Fouling of membranes in MBR process can be divided into three 
stages [63,9]:

Stage 1: Conditioning Fouling

Conditioning fouling stage due to fast deposition of microbial 
products residue and initial pore blockage

Stage 2: Gradual Increase in TMP

In this stage, the TMP (transmembrane pressure) shows a gradual 
linear or weakly exponential increase. This is caused by the formation 
of biofilm and further blockage of membrane pores.

Stage 3: Rapid Increase in TMP

At Stage 3, the rate of TMP increase (dTMP/dt) increases quickly 
and drastically [64]. This is caused by the buildup of fouling on the 
membrane, which is a result of pore closure, shifts in local flux, and 
a buildup of particles [65-66]. The consistency of the cake layer also 
changes drastically, and bacteria within the internal biofilm tend to 
die due to a lack of oxygen, resulting in more extracellular polymeric 
substances (EPS). When Stage 3 is reached, it is necessary to clean the 
membrane.

By modifying sludge characteristics, such as MLSS, flock size, EPS 
content, and apparent viscosity, or by reducing the operational flux, 
the occurrence of Stage 3 can be delayed and leading to the lower 
frequency of membrane cleaning and cost savings in MBR operation 
[54]. Thus, one of the main goals of fouling control is to delay the 
sudden increase in transmembrane pressure (TMP). 

Properties of mixed liquor
Various types of contaminants can be classified according to their 

biological and chemical properties. These categories are biofoulants, 
organic foulants, and inorganic foulants.
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Figure 3: Parameters interacted in fouling of the membrane.

Figure 4: Factors influencing fouling and its step on the membrane.

Organic foulants: Organic foulants, which are biopolymers such 
as polysaccharides and proteins, are metabolic products of bacteria 
(known as EPS) that can build up on the membrane in an MBR system 
and reduce its permeability. A study by Wang XM, et al. [67] showed 
that these biopolymers can be a major factor in membrane fouling 
when performing experiments on laboratory-scale submerged MBR 
with a hollow fiber membrane module.

Inorganic foulants: The precipitation of inorganic ions, such as 
Ca2+, Mg2+, and Po4

3- onto membrane surfaces and into membrane 
pores, can cause a process known as membrane fouling. This effect is 
due to the hydrolysis of these ions, which can lead to changes in pH 
and oxidation [67].

Biofouling, the fouling of a membrane by microorganisms, occurs 
due to the contact between the mixture of liquor and the membrane 
surface. This contact leads to the adherence of microorganisms to 
the membrane surface, resulting in the formation of a fouling layer 
known as a “biofilm.” The biofilm is composed of a matrix containing 
microbes and their metabolic products, such as EPS (extracellular 
polymeric substances) and SMP (soluble microbial products). These 
substances consist of macromolecules like polysaccharides, proteins, 
and lipoproteins [68]. The characteristics of the biofilm, including its 
physicochemical properties, are determined by the microbial cells and 
EPS present within it [69]. The presence of EPS in the biofilm matrix 
enables the maintenance of microbial life functions and provides 
protection to the microbial cells from bio-acids [69].
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The development of biofouling can be divided into four steps, as 
illustrated in figure 2:

1-Attachment of microbial cells to the membrane surface.

2-Secretion of microbial products onto the membrane surface.

3-Production of EPS on the membrane.

4-Growth, multiplication, and eventual detachment of microbial 
cells from the membrane surface.

The growth of microorganisms/biofilms, physicochemical properties 
of the membrane, and solution chemistry and hydrodynamic operating 
conditions are the key factors that significantly impact fouling (Figure 
4). Controlling membrane fouling is crucial for the cost-effective and 
long-term operation of MBR technologies. To prevent fouling and 
clogging in full-scale MBRs, several strategies are utilized, including:

1-Pre-treating the wastewater before it reaches the membranes, 

2-Utilizing permeate backflush/backwashing or relaxation 
techniques,

3- Cleaning the membranes with chemicals,

4-Using chemically enhanced backwash methods, 

5-Scouring the membrane with coarse bubble aeration,

6-Modifying the mixed liquor with chemical treatments.

In MBR systems, the process of reversing the filtration flow is 
called backflushing. Its main purpose is to remove particles that are 
attached to the surface of the membrane. During the relaxation time, 
the filtration process stops to alleviate the pressure on the membrane. 
Backflushing and relaxation are two periods that occur in the normal 
operation of MBR systems, so three cycles alternate: filtration, 
backflushing, and relaxation.

Backwashing/relaxation is a popular technique for eliminating 
reversible blockages and is especially successful in eliminating cake 
layers. Submerged MBR systems use coarse bubble aeration in the 
bottom part of the membrane units to achieve membrane scouring. 
Chemical cleaning with mineral organic acids, caustic soda, or sodium 
hypochlorite can be conducted on-site or off-site. Sodium hypochlorite 
is commonly used to remove biofouling, while citric acid is used to 
eliminate inorganic fouling. Chemical cleaning is an efficient solution 
for fouling that cannot be removed during normal MBR procedure, 

however, regular and intensive chemical cleaning can reduce the life 
span of the membrane [69-71].

The addition of certain chemicals, such as coagulants, 
polyelectrolytes, adsorbing agents, and performance enhancers, 
can modify the characteristics of the mixed liquor to improve the 
filtration process and reduce membrane fouling. Coagulants are used 
to introduce positive charges, which neutralize the negative charges 
of biomass and aid in flocculation. Adsorbents, such as zeolite and 
activated carbon, have been added to the mixed liquor in MBR systems 
to reduce fouling by adsorbing colloidal and soluble substances [72]. 
Adding natural zeolite has been proven to decrease the concentration 
of soluble microbial products and mitigate fouling [73,74]. While, the 
addition of a sponge or powdered activated carbon, has been found to 
reduce cake formation and pore blockage on the membrane’s surface 
[75,76]. Cationic polymers such as MPE50 and poly-aluminum 
chloride have also been shown to be effective in decreasing membrane 
fouling [77] (Figure 5).

Biofoulants: Biofoulants are microorganisms or flocks that 
attach to and accumulate on a membrane surface, which can reduce 
permeability. This deposition and the metabolic by-products of the 
microorganisms can cause fouling [78].

Membrane fouling control
Membrane fouling can be caused by combination of foulants 

particulate, colloidal; mineral scale, nature organic and microbial 
biofilm, and there are several techniques that can be used to reduce 
this fouling. The effectiveness of these techniques is dependent on the 
feed solution and membrane characteristics, and can include boundary 
layer velocity control, turbulence inducers, membrane material 
modification, the use of external fields [79], feed pretreatment, flow 
selection, rotating membranes, and gas sparging [80].

The primary objective of membrane cleaning is to recover the 
permeation flux, by removing any deposited material from the 
membrane surface to allow for the movement of permeate. Various 
approaches can be used to clean a membrane, such as physical, 
chemical, biological/biochemical, and physico-chemical methods. 
Cleaning may be carried out either inside the reactor, or with the 
membrane taken out for separate cleaning. The following cleaning 
techniques can be employed: ultrasonic cleaning, sponge ball cleaning, 
chemical cleaning, biological/biochemical cleaning, and physico-
chemical cleaning [81,82].
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•	 Ultrasonic cleaning: This method utilizes ultrasound to 
generate agitation and turbulence on the membrane surface, effectively 
dislodging foulants and removing them from the membrane [83].

•	 Sponge ball cleaning is a mechanical method used for 
membrane cleaning that involves using sponge balls to scrub the surface 
of the membrane. This technique helps to remove contaminants and 
other unwanted materials, resulting in a cleaner membrane surface 
[84,85].

•	 Chemical cleaning: This method is employed in situations of 
irreversible fouling. It is crucial to understand the interactions between 
membrane characteristics and foulants, as well as between foulants 
and the chemical products used for cleaning, and the compatibility of 
chemical products with membrane characteristics [86].

•	 Biological/biochemical cleaning: This cleaning approach 
utilizes bioactive agents, such as enzymes, to remove foulants from 
the membrane. Biological and biochemical cleaning methods have 
a low environmental impact and are commonly used in Membrane 
Bioreactors (MBRs) [87,88].

•	 Physicochemical cleaning methods: These methods 
combine physical and chemical cleaning techniques to enhance the 
effectiveness of the cleaning process. For example, using ultrasound 
in conjunction with chemical cleaning can significantly improve flux 
recovery by up to 95% [89,90].

Membrane-fouling strategies
To reduce and avoid membrane fouling caused by highly 

concentrated industrial wastewater, a variety of strategies are employed 
in Membrane Bioreactor (MBR) systems. These involve pretreatment, 
modifying operational parameters, altering the mixed liquid, and 
employing advanced membrane modules.

The Pre-treatment is an essential step in controlling fouling as it can 
lessen the damaging effects of toxic substances or highly concentrated 
pollutants.

Pretreatment strategies: The success of Membrane Bioreactor 
(MBR) technology is heavily dependent on effective influent 
pretreatment [90]. By improving membrane performance, 
pretreatment can increase the permeate flux and reduce fouling 
rates. Various techniques are available for pretreatment, including 
physicochemical methods such as coagulation and adsorption [91]. 
For example, In 2016, Xue J, et al. [92] discussed the use of ozone 
pre-treatment for fouling control in an MBR system handling oil 
sands process affected water. Several strategies are used in Membrane 
Bioreactor (MBR) systems to control and prevent membrane fouling 
caused by extreme industrial wastewater. These strategies include 
pretreatment, operational optimization, mixed liquor adaptation, and 
the use of novel membrane modules. Pretreatment is an important step 
because it can reduce the impact of toxic or high-strength pollutants 
on fouling. Xue J, et al. [92], for example, reported the use of ozone 
pretreatment for fouling control in an MBR system that manages oil 
sands process affected water [92]. Also Yu W, et al. [93] conducted 
an investigation to assess the impact of combining alum and a low 
amount of NACLP (1mg/l) before UF membrane separation, which 
significantly reduced membrane fouling rates by nearly 60%. Sardari 
K, et al. [94] in 2018 applied electrocoagulation as a pretreatment 
to direct contact membrane distillation (DCMC) and achieved a 
57% water recovery rate. Likewise, Unal BO, et al. [95] combined 
electrocoagulation and electrooxidation procedures in a bioreactor 
with an electrical membrane, with the aim of improving the efficiency of 

membrane filtration and successfully managing membrane fouling. In 
addition, Chang H, et al. [96] and Kong FX, et al. [97] applied chemical 
coagulation for treating shale gas flowback water and produced water 
prior to ultrafiltration. These studies achieved decreased membrane 
fouling and sustained constant flux [97].

As a pretreatment method, prefiltration can involve the use of pack 
bed filters, strainers, filter cloths, or low-pressure membrane processes. 
For example, Zavala MAL, et al. [98] in 2014 implemented felt and 
compressed polyester to treat gray water from washing machines 
discharges prior to its use.

Some researchers, like Amadou-Yacouba Z, et al. [99], used the 
preozonation as a pretreatment. Examining the effect of pre-ozonation 
on fouling during nanofiltration, it was found that when ozonated 
wastewater from an MBR was used, there was a 62% decrease in flux 
at 80% of permeate recovery and improved flux recovery after simple 
water cleaning. Thus, pre-ozonation of the effluent has two advantages: 
it reduces the need for chemical cleaning and extends the membrane 
lifetime by postponing chemical cleaning.

In the same vein, Pramanik BK, et al. [100] studied the importance 
of coagulation as a pretreatment, MIEX (magnetic ion exchange 
resin), and BAC (biological activated carbon) before the MBR system 
for controlling the organic fouling of a microfiltration membrane, 
the results demonstrate that pretreatment with MIEX (Magnetic Ion 
Exchange) was more effective than pre-coagulation in reducing the 
fouling of a microfiltration membrane caused by secondary effluent. 
This is likely due to a greater removal of humic substances achieved 
with MIEX. All these pretreatment methods are efficient in removal 
of suspended solids and organic contaminants that cause membrane 
fouling abilities.

Optimizing of operational parameters: Considering the 
operating parameters of the MBRs that affect the membrane foulants, 
significant research work on the MBR process to reduce membrane 
fouling has been carried out, including contradictory conclusions 
or shortcomings. Previous research conducted by Banti DC, et al. 
[101] explained that the significance of filamentous bacteria in the 
control of membrane fouling was emphasized. Nonetheless, the lower 
adsorption rate of soluble components by filamentous bacteria results 
in their diminished population in wastewater treatment processes. 
This reduction occurs due to the comparatively faster adsorption 
rate exhibited by other bacteria involved in floc formation. The step-
aeration process is designed to alter biological treatment parameters 
deliberately, aiming to decrease the adsorption rate of floc-forming 
bacteria. This intentional adjustment fosters a favorable environment 
for the growth and development of filamentous bacteria.

Also authors highlights the effectiveness of the intermittent or cyclic 
aeration as a highly efficient method for controlling this technique 
is commonly employed for treating both municipal and industrial 
wastewater [102].

Minimizing membrane fouling in membrane bioreactors (MBRs) 
is achievable through the optimization of operational settings 
parameters, an illustrative example of this approach is the identification 
of cyclic aeration as an efficient and energy-conscious method for 
controlling fouling in full-scale municipal and industrial MBRs 
[103]. Furthermore, controlling fouling in MBRs requires a thorough 
understanding of the unique fouling behavior and composition, 
particular in relation to the specific characteristics of the wastewater.

Modification of mixed liquor: Saline wastewater is difficult to 
change through pretreatment, changing the mixed liquor is a direct 



 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Lazrak A, Hannoun G, Elabbas S, Oumani A, Mandi L, et al. (2023) Advancements and Challenges in Membrane Bioreactor 
Technology for Industrial Wastewater Treatment. Int J Water Wastewater Treat 9(2): dx.doi.org/10.16966/2381-5299.192 10

International Journal of Water and Wastewater Treatment
Open Access Journal

Conclusion
All industries must deal with wastewater, especially in developing 

nations, where significant quantities of wastewater are often discharged 
directly into natural ecosystems without prior treatment. In contrast, 
most developed countries utilize various treatment methods to 
eliminate pollutants from the generated wastewater before release. 
There is an endless list of applications for membrane bioreactor 
technology for the treatment of various industrial wastewaters, 
and water pollution has become a serious environmental concern, 
especially in due to the current water shortage.

This paper offers comprehensive overview of membrane fouling 
and advances in fouling reduction strategies in MBRs. It covers basic 
information on membrane fouling and the classes of membrane 
fouling in MBRs, as well as factors that affect membrane fouling. It also 
reviews current research trends in the control of membrane fouling in 
MBRs and highlights successful applications of MBR in treating high-
strength industrial effluent. Finally, it addresses the major problem 
with this innovative technology and how to address it.

The parameters that influence membrane fouling’s, such as 
membrane properties, biomass characteristics, operating parameters, 
were revealed. The primordial role of membrane fouling strategies in 
order to prevent fouling and the energy consumption needed while 
using MBR were also defined and discussed.

Furthermore, the paper examined the utilization of modeling 
and optimization methods in conjunction with other AI and ML 
approaches, including cluster analysis, image identification, and feature 
selection, to effectively supervise and regulate membrane fouling. 
Hopefully, this review will be useful in providing more information 
about membrane fouling and membrane technology in general.
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