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(through dismutase superoxide, catalase, glutathione peroxidase) or 
dietetic through the intake of food rich in Vitamin A (β-caroteno), 
Vitamin C (ascorbic acid), Vitamin E (α-tocoferol), copper, zinc, 
magnesium, selenium, caratenoids (lycopene) and phytochemical 
(resveratrol, catechins, quercetins, phenolic acid and others). These 
substances may act both as directly, neutralizing the action of 
free radicals, as indirectly, activating enzymatic systems capable 
of neutralize them [4]. Thus, oxidative stress is an important link 
between the intake of a hypercaloric diet and chronic diseases, such 
as obesity [5].

Food intake is modulated mainly through biological mechanisms 
such as homeostatic, which refer to hormonal regulators that 
initiate hunger and satiation (such as neuropeptide Y and tyrosine 
tyrosine peptide) or sign adiposity levels (such as leptin, ghrelin and 
insulin), which act in the hypothalamic encephalic centers and in 
the brainstem, sending and receiving signals according to available 
energetic substratum in order to keep a proper energetic balance; or 
may not be homeostatic (hedonic), which refer to awarding cerebral 
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Abstract
Introduction: Obesity is a disease that involves adiposity excess associated to diverse factors, including behavior ones, such as hormonal, 
adipocitarious, neural and intestinal. The excess of adipose tissue results in inflammation, which begins with secretion of pro-inflammatory 
adypokines, activating inflammatory T cells and resulting in imbalance between antioxidants and oxidants compounds. The recuperation of this 
defense system may occur through endogenous or dietetics origin. Diet rich in antioxidants is inversely bound to metabolic disturbances. Therefore, 
these compounds may be regarded coadjutant potentials in the prevention of obesity.

Objectives: To review and to summarize critically studies related to themes concerning antioxidants and food intake mediators.

Methods: It was done a narrative review about food intake mediators in humans related to obesity and antioxidants intake.

Results: Overweight individuals possess an imbalance between intrinsic signals related to appetite and a nutritionally balanced diet is fundamental 
to oppose obesity. The intake of food rich in antioxidant may be a strategy to reach metabolic homeostasis and the reduction of damage caused by 
obesity.

Conclusion: The antioxidant compounds present an anti-obesity potential effect due to food intake mediators’ modulation for opposing damage 
caused by excess of adipose tissue deposition.
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Introduction
Obesity is a complex disease, which involves the excessive 

adiposity accumulation associated to diverse factors both behavioral 
as hormonal, adipocitarious, neural and intestinal [1].

The excess of adipose tissue deposition secretes many bioactive 
substances involved in the regulation of insulin, arterial pressure 
and inflammatory estate such as leptin, adiponectin, InterLeukin 
(IL), Tumor Necrosis Factor alpha (TNF-α), among others [2]. A 
subclinical inflammation is observed subsequently to the adiposity 
excess which begin from the pro-inflammatory adipokine, such as 
leptin, which activates inflammatory T cells, causing a progressive 
inflammation [3].

On the subclinical chronic inflammation occurs an imbalance 
between antioxidant and oxidant compounds, which favors the 
installation of an oxidative stress process. The maintenance and 
recuperation of this defense system may occur through enzymatic 
or non-enzymatic systems, and this may be of an endogenous origin 

https://www.sciforschenonline.org
http://dx.doi.org/10.16966/2470-6086.153


 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Dias BV, Previato HDRA, Volp ACP (2018) Mediators Involved in Obesity and Modulation of Food Intake by Antioxidants. Nutr 
Food Technol Open Access 4(1): dx.doi.org/10.16966/2470-6086.153 2

Nutrition and Food Technology: Open Access
Open Access Journal

oxidative stress, until its cause is reverted [18].

The excessive intake of macronutrients is one of the biggest 
contributors for the increasing of obesity prevalence [19]. However, the 
act of eat excessively is not always something conscious or compulsive; 
studies show that there may be a defective answer of intrinsic signs 
related to appetite in overweight individuals [20-22].

The act of eating is highly related to many processes, which result in 
the energetic balance, such as hunger, satiation and repletion. Hunger 
is considered as the urge that leads to the action of eating; satiation is 
the period in which eating is interrupted and repletion is the period 
between meals, where there is an eating inhibition. This “food desire” 
may be, or not, due to a physiologic necessity, so it can be stimulated by 
hormonal signal due to lack of energetic substratum, such as olfactory 
or visual external stimuli [23].

The ingestion/expenditure of nutrients are controlled by neural 
structures, which involve specific neurochemical and neuroendocrine 
systems and, when it happens a commitment in these systems, 
occurs a consequent imbalance of eating behavior [24]. With this, 
there is a complex interaction between pre-absorbing, absorbing and 
post-absorbing stages, which determine food intake and energetic 
expenditure. Imbalanced intakes of macronutrients and micronutrients 
may induce an alteration of some mediators’ production, which 
intervene directly on corporal composition, biochemical and clinical 
profile [25].

Thus, balanced diet is a fundamental strategy against obesity [26]. 
Potential mechanisms related to the benefits of a diet modification 
include: improvement of insulin resistance; improvement of insulin 
secretion depending on glucose at beta pancreatic cells; hunger/
satiation system regulation through proper working of the mediators 
responsible for appetite and inflammation attenuation [27].

Many neuropeptides have been studied in order to better 
understand central factors related to ingestion control and obesity 
etiology [28,29,8].

Food intake mediators and obesity in humans
Many food intake mediators are responsible for energetic 

homeostasis and metabolic disturbances, which may proceed to an 
imbalance among food intake versus energetic expenditure [30].

PYY is an intestinal peptidic hormone secreted on post-prandial 
period proportionally to the ingested caloric quantity. This is secreted 
by L cells of distal portion of large and small intestine and it reduces 
intestinal mobility and, therefore, it improves satiation and reduces the 
intake of food [31].

Studies show that obese individuals present minor concentrations 
of endogen PYY in fasting and post-prandial period when compared 
to non-obese ones [32-34].

Brandão PP, et al. [35] assessed PYY concentration after and before 
meals in obese women with or without eating compulsion episodes. A 
total of 25 women from 32 to 50 years old were studied (9 eutrophic 
without eating compulsion episodes, 9 obese ones with eating 
compulsion episodes and 7 obese women without eating compulsion 
episodes). It was found difference on PYY levels when the thin women 
group were compared to the obese group (the obese ones presented 
lower levels). The group with eating compulsion episode presented 
the lowest levels of PYY, reinforcing its direct relation to the ingested 
caloric quantity and obesity.

system. So palatable food (rich mainly in fat and sugar) are consumed 
even after the energetic requirement being accomplished. On the other 
hand, non-palatable food (no sugar and fat) are not desired on the 
same way by the brain [6,7].

The influence of biological factors and their alterations induced 
by diets on corporal composition are not totally clarified yet [8]. 
Gastrointestinal system presents special chemoreceptors and 
mechanoreceptors that monitor quantity and quality of food intake 
and nutrients. Therefore, the information arrives at the hypothalamus 
through afferent nerve fibers that understand the signals related to 
current necessities [7]. Many hormones are involved in these feedback 
mechanisms between gastrointestinal tract and brain, and those 
hormones may be liberated before or after food intake, whether they 
are orexigenic or anorexigenic, always looking for the balance between 
intakes, spent and stocked energy. Among the involved mediators 
in such regulation, it may be mentioned Peptide Tyrosine Tyrosine 
(PYY), Pancreatic Polypeptide (PP), alpha-Melanocyte Stimulating 
Hormone (alpha-MSH), Peptide C, chemerin and beta-endorphin [9].

The homeostasis of these mediators depends on individual factors 
such as corporal composition and lifestyle, including exercise and 
nourishment [10]. Thus, a diet rich in fruits and vegetables is inversely 
linked to metabolic disturbances [11]. Grains, teas and wines are rich 
in polyphenols, which are natural substances composed by phenolic 
rings. Polyphenols might be classified as stilbenes, lignans, phenolic 
acids and flavonoids [12].

Polyphenols present many benefits for health due to their 
antioxidant potential effect, anti-inflammatory [13] and insulin 
potentiator, causing a plasmatic glucose reduction in diabetic [14] 
and obese people [15]. However, their effects on the regulation of 
neuropeptides and neural-hormones involved at food intake are not 
totally clarified [16].

The objective of this paper was to review studies for a higher 
understanding about the effect of antioxidants on food intake 
mediators.

Methodology
This paper consists on a narrative review of studies about food 

intake mediators’ and their relation with antioxidants consumption.

It was done a bibliographical search on databases PubMed, SciElo 
and Science Direct, considering the following keywords: “food intake 
mediators”, in association to “obesity”, “antioxidants”, “polyphenols” 
and “anthocyanins” and their respective correspondents in English: 
“food intake mediators”, “obesity”, “antioxidants”, “polyphenols”, and 
“anthocyanins”.

In order to assess the action of food intake mediators, it was 
included interventions done in humans, which would assess their 
action over metabolic parameters associated to obesity. It was included 
studies with humans and animals to assess the action of antioxidants 
on food intake parameters, considering that the literature on the topic 
is still scarce.

Results
Many proteins involved in the arterial pressure, fat and glucose 

metabolism regulation, such as leptin and chemerin are adipokine 
secreted by adipose tissue [17]. It is also known that many cytokines 
and proteins of acute stage related to subclinical inflammation are 
highly found in obese patients. An imbalance between pro and anti-
inflammatory cytokines induces the inflammation estate, which 
occurs when there is an adipose tissue, forming a cycle responsible for 
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In a study carried out to determine PYY effects managed 
peripherally over food intake and activation of enteric neurons and 
rhombencephalon found a reduction of 10% sucrose solution ingestion 
and activation of enteric neurons before the vagal dorsal complex, 
suggesting that these act peripherally before acting centrally [36].

Another determining factor of concentrations is the ingested caloric 
density, which directly influences the serum PYY concentration, thus 
presented an important relation to obesity genesis [37].

Another marker is the pancreatic polypeptide, a peptide hormone 
produced by special cells on pancreatic islet, called F cells, which, as 
with PYY, influence the energetic balance, for they reduce food intake 
[38]. This hormone may be produced also by exocrine way on distal 
intestine [39].

Studies showed that a higher secretion of PP is related to reduction 
of food intake and that circling levels of this hormone keep elevated up 
to 6 hours after the meal [40-42].

Low concentrations of PP were found concomitantly to the increase 
of NPY secretion (an orexigenic hormone) on the arched core 
hypothalamus on obese humans [43]. Edelsbrunner ME, et al. [44] 
observed that through knocking down the gene related to PP (gene 
Y4) occurs a higher food intake and a consequent gaining of weight in 
rats, confirming its anorexigenic action.

A study that assessed PP infusions effects done in the morning and 
afternoon in patients with Prader-Willi Syndrome (a genetic disease 
which leads to child obesity) observed a caloric ingestion reduction 
of approximately 12% [45]. With this, administration of PP in obese 
individuals might help to reduce the ingestion through ghrelin 
hormone concentration reduction (an orexigenic hormone) and thus 
control and restore the energetic balance [46].

Chemerin is a chemotactic adipokine, which connects to CMKLR1 
receptor attached to the G protein that participates on the metabolic 
regulation of adipocytes, and, due to this its role on inflammation and 
metabolism may assist the understanding of this relation between 
obesity and chronic inflammation [47,48].

Besides many obese individuals present higher concentration 
of chemerin when compared to thin individuals, it was shown 
association of concentrations of this adipokine with triglycerides, 
arterial pressure, insulin resistance and corporal mass in non-diabetic 
individuals [48,49].

Schmid A, et al. [50] reported that oral ingestion of a lipidic 
emulsion, free from carbohydrates and proteins, regulates negatively 
the serum concentrations of chemerin in healthy humans. However, 
the molecular mechanisms of this regulation in humans are not 
clarified [50].

A good food intake mediator is the beta-endorphin, a peptide of 
melanocortins family found in organisms in lower concentrations 
under normal conditions, which may increase up to 10 times when 
in stress [51]. Studies show that central infusion of beta-endorphin 
stimulates food intake [52-54].

Considering that beta-endorphin is connected to the reward system 
under non-private conditions, it may be considered a good marker 
to assist the understanding of corporal composition and dietetic 
parameters, since its effects are related to palatable food intake and 
these are associated to overweight and obesity [55].

Alpha-MSH (hormone stimulating of alfa-melanocytes) also 
participates of the hedonic control of eating, as beta-endorphin, it is a 
neuropeptide of the melanocortins family [56]. It has an anorexigenic 

action and participates of intrinsic processes related to metabolic 
process on obesity [57].

The anorexigenic action of alpha-MSH seems to occur due to the 
neurotrophic factor stimulation derived from the brain (BDNF), an 
endogen protein responsible for regular synapses stimulated both 
peripherally as centrally, after the activation of melanocortin receptor 
[58]. In humans, mutations on the gene of MC4R receptor may result 
in cases of obesity, which might appear in severe form even in the 
childhood [59].

The mRNA expression of its receptor possesses a direct relation to 
adipose tissue on obese individuals [60], and its related to the increase 
of lipolysis on white adipose tissue [61], muscular insulinic sensibility 
[62], thermogenesis on brown adipose tissue [63] and reduction of 
insulin excretion on pancreatic beta cells [64], thus characterizing a 
good correspondent of subclinical inflammation [60].

Food intake mediators and antioxidants
There are growing evidences on the protection role of health through 

fruits and vegetables consumption, which are the main contributors 
for polyphenols intake [65-67]. These compounds’ ingestion has 
presented effects on the plasmatic glucose concentration reduction 
in obese individuals, with metabolic syndrome and type 2 diabetes 
[14,15]. These effects happen mainly for its antioxidant action. Studies 
showed that polyphenols distribute largely on the tissues where they 
act as exogenous antioxidants on neutralization of free radicals and 
consequent attenuation of oxidative stress [68,69].

While a small part of polyphenols may be absorbed on the small 
intestine, the bigger part ingested on the diet is not bioavailable on the 
distal portion of the human intestine, exerting its biologic activity on 
the intestinal tract through the interaction of colon microbiota [70].

These compounds may act directly on the encephalon. Studies in rats 
showed that they pass the hematoencephalic barrier after assessing the 
catechins concentration (a category of flavonoids) in encephalic tissue 
after polyphenol extract intake. However, necessary concentration 
for this was not totally clarified yet [71-73]. Despite that, the effects 
of neuropeptides and neuro-hormones regulation involved to food 
intake deserve attention, for it is a potential prevention and treatment 
of disturbances related to food intake such as obesity, diabetes, and 
others [16].

The intake of grape extract rich in polyphenol for 10 consecutive 
days by rats increased significantly the catechin concentrations and 
epicatechins (kinds of polyphenols) on encephalic tissue, result which 
was not observed on the group that received a single dose, which 
suggest that the long term intake may improve its action [74].

Studies proved that polyphenols intake causes a reduction of factors 
related to metabolic syndrome and obesity through the suppression of 
fat absorption on the intestine, thermogenesis activation, attenuation 
of chronic inflammation and fat oxidation [75-79,14].

Some studies in humans and in cultures of animal cells helped 
to clarify the potential role of polyphenols on neuro-hormones 
modulation related to food intake and energetic homeostasis [80].

The insulin, an important hormone that regulates the glucose levels 
on blood, has its action empowered with the polyphenols intake, 
causing an improvement on insulin resistance in obese patients with 
type 2 diabetes and/or metabolic syndrome [16].

Lu C, et al. [77] assessed the administration of a green tea in rats 
submitted to a diet rich in fat and observed a reduction on the ghrelin 
levels, a orexigenic hormone, caused by polyphenols contained in the 
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drink.

It was found by Weickert a potential anorexigenic effect caused by 
isoflavone intake (polyphenol contained in soy) due to the increasing 
of PYY concentration in healthy women [81].

Considering that inflammatory factors and oxidative estate are 
related to obesity, the reduction of those by antioxidant action through 
diet might favor the metabolic homeostasis [82-85].

Conclusion
Food intake mediators are very important to energetic homeostasis. 

Disturbances on the working of orexigenic or anorexigenic mediators 
may cause a metabolic dysfunction and, consequently, adipose 
tissue accumulation and obesity. Due to the capacity of reduce the 
inflammation damage and oxidative stress observed in obesity, the 
antioxidant compounds present potential anti-obesity effect due to 
the modulation of food intake mediators. However, more studies are 
necessary in humans to clarify this effect.
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